添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

The MIT License (MIT)

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

title: Position-wise Feed-Forward Network (FFN) summary: Documented reusable implementation of the position wise feedforward network.

# Position-wise Feed-Forward Network (FFN) This is a [PyTorch]( https://pytorch.org ) implementation of position-wise feedforward network used in transformer.

FFN consists of two fully connected layers. Number of dimensions in the hidden layer $d_{ff}$, is generally set to around four times that of the token embedding $d_{model}$. So it is sometime also called the expand-and-contract network.

There is an activation at the hidden layer, which is usually set to ReLU (Rectified Linear Unit) activation, $$max(0, x)$$

That is, the FFN function is, $$FFN(x, W_1, W_2, b_1, b_2) = max(0, x W_1 + b_1) W_2 + b_2$$ where $W_1$, $W_2$, $b_1$ and $b_2$ are learnable parameters.

Sometimes the GELU (Gaussian Error Linear Unit) activation is also used instead of ReLU. $$x Phi(x)$$ where $Phi(x) = P(X le x), X sim mathcal{N}(0,1)$ ### Gated Linear Units

This is a generic implementation that supports different variants including [Gated Linear Units]( https://papers.labml.ai/paper/2002.05202 ) (GLU).

class darts.models.components.feed_forward. FeedForward ( d_model , d_ff , dropout = 0.1 , activation = ReLU() , is_gated = False , bias1 = True , bias2 = True , bias_gate = True ) [source]

Bases: Module

## FFN module

source [FeedForward network]( https://arxiv.org/abs/2002.05202 )

Methods

apply (fn)

Apply fn recursively to every submodule (as returned by .children() ) as well as self.

bfloat16 ()

Casts all floating point parameters and buffers to bfloat16 datatype.

buffers ([recurse])

Return an iterator over module buffers.

children ()

Return an iterator over immediate children modules.

compile (*args, **kwargs)

Compile this Module's forward using torch.compile() .

cpu ()

Move all model parameters and buffers to the CPU.

cuda ([device])

Move all model parameters and buffers to the GPU.

double ()

Casts all floating point parameters and buffers to double datatype.

eval ()

Set the module in evaluation mode.

extra_repr ()

Set the extra representation of the module.

float ()

Casts all floating point parameters and buffers to float datatype.

forward (x)

Define the computation performed at every call.

get_buffer (target)

Return the buffer given by target if it exists, otherwise throw an error.

get_extra_state ()

Return any extra state to include in the module's state_dict.

get_parameter (target)

Return the parameter given by target if it exists, otherwise throw an error.

get_submodule (target)

Return the submodule given by target if it exists, otherwise throw an error.

half ()

Casts all floating point parameters and buffers to half datatype.

ipu ([device])

Move all model parameters and buffers to the IPU.

load_state_dict (state_dict[, strict, assign])

Copy parameters and buffers from state_dict into this module and its descendants.

modules ()

Return an iterator over all modules in the network.

named_buffers ([prefix, recurse, ...])

Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

named_children ()

Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

named_modules ([memo, prefix, remove_duplicate])

Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

named_parameters ([prefix, recurse, ...])

Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

parameters ([recurse])

Return an iterator over module parameters.

register_backward_hook (hook)

Register a backward hook on the module.

register_buffer (name, tensor[, persistent])

Add a buffer to the module.

register_forward_hook (hook, *[, prepend, ...])

Register a forward hook on the module.

register_forward_pre_hook (hook, *[, ...])

Register a forward pre-hook on the module.

register_full_backward_hook (hook[, prepend])

Register a backward hook on the module.

register_full_backward_pre_hook (hook[, prepend])

Register a backward pre-hook on the module.

register_load_state_dict_post_hook (hook)

Register a post hook to be run after module's load_state_dict is called.

register_module (name, module)

Alias for add_module() .

register_parameter (name, param)

Add a parameter to the module.

register_state_dict_pre_hook (hook)

Register a pre-hook for the state_dict() method.

requires_grad_ ([requires_grad])

Change if autograd should record operations on parameters in this module.

set_extra_state (state)

Set extra state contained in the loaded state_dict .

share_memory ()

See torch.Tensor.share_memory_() .

state_dict (*args[, destination, prefix, ...])

Return a dictionary containing references to the whole state of the module.

to (*args, **kwargs)

Move and/or cast the parameters and buffers.

to_empty (*, device[, recurse])

Move the parameters and buffers to the specified device without copying storage.

train ([mode])

Set the module in training mode.

type (dst_type)

Casts all parameters and buffers to dst_type .

xpu ([device])

Move all model parameters and buffers to the XPU.

zero_grad ([set_to_none])

Reset gradients of all model parameters.

  • d_model is the number of features in a token embedding

  • d_ff is the number of features in the hidden layer of the FFN

  • dropout is dropout probability for the hidden layer,

    compatible with Monte Carlo dropout at inference time

  • is_gated specifies whether the hidden layer is gated

  • bias1 specified whether the first fully connected layer should have a learnable bias

  • bias2 specified whether the second fully connected layer should have a learnable bias

  • bias_gate specified whether the fully connected layer for the gate should have a learnable bias

  • Methods

    apply (fn)

    Apply fn recursively to every submodule (as returned by .children() ) as well as self.

    bfloat16 ()

    Casts all floating point parameters and buffers to bfloat16 datatype.

    buffers ([recurse])

    Return an iterator over module buffers.

    children ()

    Return an iterator over immediate children modules.

    compile (*args, **kwargs)

    Compile this Module's forward using torch.compile() .

    cpu ()

    Move all model parameters and buffers to the CPU.

    cuda ([device])

    Move all model parameters and buffers to the GPU.

    double ()

    Casts all floating point parameters and buffers to double datatype.

    eval ()

    Set the module in evaluation mode.

    extra_repr ()

    Set the extra representation of the module.

    float ()

    Casts all floating point parameters and buffers to float datatype.

    forward (x)

    Define the computation performed at every call.

    get_buffer (target)

    Return the buffer given by target if it exists, otherwise throw an error.

    get_extra_state ()

    Return any extra state to include in the module's state_dict.

    get_parameter (target)

    Return the parameter given by target if it exists, otherwise throw an error.

    get_submodule (target)

    Return the submodule given by target if it exists, otherwise throw an error.

    half ()

    Casts all floating point parameters and buffers to half datatype.

    ipu ([device])

    Move all model parameters and buffers to the IPU.

    load_state_dict (state_dict[, strict, assign])

    Copy parameters and buffers from state_dict into this module and its descendants.

    modules ()

    Return an iterator over all modules in the network.

    named_buffers ([prefix, recurse, ...])

    Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

    named_children ()

    Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

    named_modules ([memo, prefix, remove_duplicate])

    Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

    named_parameters ([prefix, recurse, ...])

    Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

    parameters ([recurse])

    Return an iterator over module parameters.

    register_backward_hook (hook)

    Register a backward hook on the module.

    register_buffer (name, tensor[, persistent])

    Add a buffer to the module.

    register_forward_hook (hook, *[, prepend, ...])

    Register a forward hook on the module.

    register_forward_pre_hook (hook, *[, ...])

    Register a forward pre-hook on the module.

    register_full_backward_hook (hook[, prepend])

    Register a backward hook on the module.

    register_full_backward_pre_hook (hook[, prepend])

    Register a backward pre-hook on the module.

    register_load_state_dict_post_hook (hook)

    Register a post hook to be run after module's load_state_dict is called.

    register_module (name, module)

    Alias for add_module() .

    register_parameter (name, param)

    Add a parameter to the module.

    register_state_dict_pre_hook (hook)

    Register a pre-hook for the state_dict() method.

    requires_grad_ ([requires_grad])

    Change if autograd should record operations on parameters in this module.

    set_extra_state (state)

    Set extra state contained in the loaded state_dict .

    share_memory ()

    See torch.Tensor.share_memory_() .

    state_dict (*args[, destination, prefix, ...])

    Return a dictionary containing references to the whole state of the module.

    to (*args, **kwargs)

    Move and/or cast the parameters and buffers.

    to_empty (*, device[, recurse])

    Move the parameters and buffers to the specified device without copying storage.

    train ([mode])

    Set the module in training mode.

    type (dst_type)

    Casts all parameters and buffers to dst_type .

    xpu ([device])

    Move all model parameters and buffers to the XPU.

    zero_grad ([set_to_none])

    Reset gradients of all model parameters.

    add_module ( name , module )

    Add a child module to the current module.

    The module can be accessed as an attribute using the given name.

    Parameters
  • name ( str ) – name of the child module. The child module can be accessed from this module using the given name

  • module ( Module ) – child module to be added to the module.

  • Return type
    apply ( fn )

    Apply fn recursively to every submodule (as returned by .children() ) as well as self.

    Typical use includes initializing the parameters of a model (see also nn-init-doc ).

    Parameters

    fn ( Module -> None) – function to be applied to each submodule

    Returns
    Return type

    Module

    Example:

    >>> @torch.no_grad()
    >>> def init_weights(m):
    >>>     print(m)
    >>>     if type(m) == nn.Linear:
    >>>         m.weight.fill_(1.0)
    >>>         print(m.weight)
    >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
    >>> net.apply(init_weights)
    Linear(in_features=2, out_features=2, bias=True)
    Parameter containing:
    tensor([[1., 1.],
            [1., 1.]], requires_grad=True)
    Linear(in_features=2, out_features=2, bias=True)
    Parameter containing:
    tensor([[1., 1.],
            [1., 1.]], requires_grad=True)
    Sequential(
      (0): Linear(in_features=2, out_features=2, bias=True)
      (1): Linear(in_features=2, out_features=2, bias=True)
    
    Parameters

    recurse (bool) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module.

    Yields

    torch.Tensor – module buffer

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> for buf in model.buffers():
    >>>     print(type(buf), buf.size())
    <class 'torch.Tensor'> (20L,)
    <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
    
    Return type

    Iterator[Tensor]

    compile(*args, **kwargs)

    Compile this Module’s forward using torch.compile().

    This Module’s __call__ method is compiled and all arguments are passed as-is to torch.compile().

    See torch.compile() for details on the arguments for this function.

    cuda(device=None)

    Move all model parameters and buffers to the GPU.

    This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on GPU while being optimized.

    This method modifies the module in-place.

    Parameters

    device (int, optional) – if specified, all parameters will be copied to that device

    Returns
    Return type

    Module

    eval()

    Set the module in evaluation mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm,

    This is equivalent with self.train(False).

    See locally-disable-grad-doc for a comparison between .eval() and several similar mechanisms that may be confused with it.

    Returns
    Return type

    Module

    extra_repr()

    Set the extra representation of the module.

    To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.

    Return type
    forward(x)[source]

    Define the computation performed at every call.

    Should be overridden by all subclasses.

    Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

    get_buffer(target)

    Return the buffer given by target if it exists, otherwise throw an error.

    See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

    Parameters

    target (str) – The fully-qualified string name of the buffer to look for. (See get_submodule for how to specify a fully-qualified string.)

    Returns

    The buffer referenced by target

    Return type

    torch.Tensor

    Raises

    AttributeError – If the target string references an invalid path or resolves to something that is not a buffer

    get_extra_state()

    Return any extra state to include in the module’s state_dict.

    Implement this and a corresponding set_extra_state() for your module if you need to store extra state. This function is called when building the module’s state_dict().

    Note that extra state should be picklable to ensure working serialization of the state_dict. We only provide provide backwards compatibility guarantees for serializing Tensors; other objects may break backwards compatibility if their serialized pickled form changes.

    Returns

    Any extra state to store in the module’s state_dict

    Return type

    object

    get_parameter(target)

    Return the parameter given by target if it exists, otherwise throw an error.

    See the docstring for get_submodule for a more detailed explanation of this method’s functionality as well as how to correctly specify target.

    Parameters

    target (str) – The fully-qualified string name of the Parameter to look for. (See get_submodule for how to specify a fully-qualified string.)

    Returns

    The Parameter referenced by target

    Return type

    torch.nn.Parameter

    Raises

    AttributeError – If the target string references an invalid path or resolves to something that is not an nn.Parameter

    get_submodule(target)

    Return the submodule given by target if it exists, otherwise throw an error.

    For example, let’s say you have an nn.Module A that looks like this:

    (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) (linear): Linear(in_features=100, out_features=200, bias=True)

    (The diagram shows an nn.Module A. A has a nested submodule net_b, which itself has two submodules net_c and linear. net_c then has a submodule conv.)

    To check whether or not we have the linear submodule, we would call get_submodule("net_b.linear"). To check whether we have the conv submodule, we would call get_submodule("net_b.net_c.conv").

    The runtime of get_submodule is bounded by the degree of module nesting in target. A query against named_modules achieves the same result, but it is O(N) in the number of transitive modules. So, for a simple check to see if some submodule exists, get_submodule should always be used.

    Parameters

    target (str) – The fully-qualified string name of the submodule to look for. (See above example for how to specify a fully-qualified string.)

    Returns

    The submodule referenced by target

    Return type

    torch.nn.Module

    Raises

    AttributeError – If the target string references an invalid path or resolves to something that is not an nn.Module

    ipu(device=None)

    Move all model parameters and buffers to the IPU.

    This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on IPU while being optimized.

    This method modifies the module in-place.

    Parameters

    device (int, optional) – if specified, all parameters will be copied to that device

    Returns
    Return type

    Module

    load_state_dict(state_dict, strict=True, assign=False)

    Copy parameters and buffers from state_dict into this module and its descendants.

    If strict is True, then the keys of state_dict must exactly match the keys returned by this module’s state_dict() function.

    Warning

    If assign is True the optimizer must be created after the call to load_state_dict unless get_swap_module_params_on_conversion() is True.

    Parameters
  • state_dict (dict) – a dict containing parameters and persistent buffers.

  • strict (bool, optional) – whether to strictly enforce that the keys in state_dict match the keys returned by this module’s state_dict() function. Default: True

  • assign (bool, optional) – When False, the properties of the tensors in the current module are preserved while when True, the properties of the Tensors in the state dict are preserved. The only exception is the requires_grad field of Default: ``False`

  • Returns
    missing_keys is a list of str containing any keys that are expected

    by this module but missing from the provided state_dict.

    If a parameter or buffer is registered as None and its corresponding key exists in state_dict, load_state_dict() will raise a RuntimeError.

    Duplicate modules are returned only once. In the following example, l will be returned only once.

    Example:

    >>> l = nn.Linear(2, 2)
    >>> net = nn.Sequential(l, l)
    >>> for idx, m in enumerate(net.modules()):
    ...     print(idx, '->', m)
    0 -> Sequential(
      (0): Linear(in_features=2, out_features=2, bias=True)
      (1): Linear(in_features=2, out_features=2, bias=True)
    1 -> Linear(in_features=2, out_features=2, bias=True)
    
    Return type

    Iterator[Module]

    named_buffers(prefix='', recurse=True, remove_duplicate=True)

    Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.

    Parameters
  • prefix (str) – prefix to prepend to all buffer names.

  • recurse (bool, optional) – if True, then yields buffers of this module and all submodules. Otherwise, yields only buffers that are direct members of this module. Defaults to True.

  • remove_duplicate (bool, optional) – whether to remove the duplicated buffers in the result. Defaults to True.

  • Yields

    (str, torch.Tensor) – Tuple containing the name and buffer

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> for name, buf in self.named_buffers():
    >>>     if name in ['running_var']:
    >>>         print(buf.size())
    
    Return type

    Iterator[Tuple[str, Tensor]]

    named_children()

    Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.

    Yields

    (str, Module) – Tuple containing a name and child module

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> for name, module in model.named_children():
    >>>     if name in ['conv4', 'conv5']:
    >>>         print(module)
    
    Return type

    Iterator[Tuple[str, Module]]

    named_modules(memo=None, prefix='', remove_duplicate=True)

    Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.

    Parameters
  • memo (Optional[Set[Module]]) – a memo to store the set of modules already added to the result

  • prefix (str) – a prefix that will be added to the name of the module

  • remove_duplicate (bool) – whether to remove the duplicated module instances in the result or not

  • Yields

    (str, Module) – Tuple of name and module

    Duplicate modules are returned only once. In the following example, l will be returned only once.

    Example:

    >>> l = nn.Linear(2, 2)
    >>> net = nn.Sequential(l, l)
    >>> for idx, m in enumerate(net.named_modules()):
    ...     print(idx, '->', m)
    0 -> ('', Sequential(
      (0): Linear(in_features=2, out_features=2, bias=True)
      (1): Linear(in_features=2, out_features=2, bias=True)
    1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
    named_parameters(prefix='', recurse=True, remove_duplicate=True)
    

    Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.

    Parameters
  • prefix (str) – prefix to prepend to all parameter names.

  • recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

  • remove_duplicate (bool, optional) – whether to remove the duplicated parameters in the result. Defaults to True.

  • Yields

    (str, Parameter) – Tuple containing the name and parameter

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> for name, param in self.named_parameters():
    >>>     if name in ['bias']:
    >>>         print(param.size())
    
    Return type

    Iterator[Tuple[str, Parameter]]

    parameters(recurse=True)

    Return an iterator over module parameters.

    This is typically passed to an optimizer.

    Parameters

    recurse (bool) – if True, then yields parameters of this module and all submodules. Otherwise, yields only parameters that are direct members of this module.

    Yields

    Parameter – module parameter

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> for param in model.parameters():
    >>>     print(type(param), param.size())
    <class 'torch.Tensor'> (20L,)
    <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
    
    Return type

    Iterator[Parameter]

    register_backward_hook(hook)

    Register a backward hook on the module.

    This function is deprecated in favor of register_full_backward_hook() and the behavior of this function will change in future versions.

    Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_buffer(name, tensor, persistent=True)

    Add a buffer to the module.

    This is typically used to register a buffer that should not to be considered a model parameter. For example, BatchNorm’s running_mean is not a parameter, but is part of the module’s state. Buffers, by default, are persistent and will be saved alongside parameters. This behavior can be changed by setting persistent to False. The only difference between a persistent buffer and a non-persistent buffer is that the latter will not be a part of this module’s state_dict.

    Buffers can be accessed as attributes using given names.

    Parameters
  • name (str) – name of the buffer. The buffer can be accessed from this module using the given name

  • tensor (Tensor or None) – buffer to be registered. If None, then operations that run on buffers, such as cuda, are ignored. If None, the buffer is not included in the module’s state_dict.

  • persistent (bool) – whether the buffer is part of this module’s state_dict.

  • Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> self.register_buffer('running_mean', torch.zeros(num_features))
    
    Return type
    register_forward_hook(hook, *, prepend=False, with_kwargs=False, always_call=False)

    Register a forward hook on the module.

    The hook will be called every time after forward() has computed an output.

    If with_kwargs is False or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the output. It can modify the input inplace but it will not have effect on forward since this is called after forward() is called. The hook should have the following signature:

    hook(module, args, output) -> None or modified output
    

    If with_kwargs is True, the forward hook will be passed the kwargs given to the forward function and be expected to return the output possibly modified. The hook should have the following signature:

    hook(module, args, kwargs, output) -> None or modified output
    
    Parameters
  • hook (Callable) – The user defined hook to be registered.

  • prepend (bool) – If True, the provided hook will be fired before all existing forward hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing forward hooks on this torch.nn.modules.Module. Note that global forward hooks registered with register_module_forward_hook() will fire before all hooks registered by this method. Default: False

  • with_kwargs (bool) – If True, the hook will be passed the kwargs given to the forward function. Default: False

  • always_call (bool) – If True the hook will be run regardless of whether an exception is raised while calling the Module. Default: False

  • Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_forward_pre_hook(hook, *, prepend=False, with_kwargs=False)

    Register a forward pre-hook on the module.

    The hook will be called every time before forward() is invoked.

    If with_kwargs is false or not specified, the input contains only the positional arguments given to the module. Keyword arguments won’t be passed to the hooks and only to the forward. The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned (unless that value is already a tuple). The hook should have the following signature:

    hook(module, args) -> None or modified input
    

    If with_kwargs is true, the forward pre-hook will be passed the kwargs given to the forward function. And if the hook modifies the input, both the args and kwargs should be returned. The hook should have the following signature:

    hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
    
    Parameters
  • hook (Callable) – The user defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing forward_pre hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing forward_pre hooks on this torch.nn.modules.Module. Note that global forward_pre hooks registered with register_module_forward_pre_hook() will fire before all hooks registered by this method. Default: False

  • with_kwargs (bool) – If true, the hook will be passed the kwargs given to the forward function. Default: False

  • Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_full_backward_hook(hook, prepend=False)

    Register a backward hook on the module.

    The hook will be called every time the gradients with respect to a module are computed, i.e. the hook will execute if and only if the gradients with respect to module outputs are computed. The hook should have the following signature:

    hook(module, grad_input, grad_output) -> tuple(Tensor) or None
    

    The grad_input and grad_output are tuples that contain the gradients with respect to the inputs and outputs respectively. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the input that will be used in place of grad_input in subsequent computations. grad_input will only correspond to the inputs given as positional arguments and all kwarg arguments are ignored. Entries in grad_input and grad_output will be None for all non-Tensor arguments.

    For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

    Warning

    Modifying inputs or outputs inplace is not allowed when using backward hooks and will raise an error.

    Parameters
  • hook (Callable) – The user-defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing backward hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing backward hooks on this torch.nn.modules.Module. Note that global backward hooks registered with register_module_full_backward_hook() will fire before all hooks registered by this method.

  • Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_full_backward_pre_hook(hook, prepend=False)

    Register a backward pre-hook on the module.

    The hook will be called every time the gradients for the module are computed. The hook should have the following signature:

    hook(module, grad_output) -> tuple[Tensor] or None
    

    The grad_output is a tuple. The hook should not modify its arguments, but it can optionally return a new gradient with respect to the output that will be used in place of grad_output in subsequent computations. Entries in grad_output will be None for all non-Tensor arguments.

    For technical reasons, when this hook is applied to a Module, its forward function will receive a view of each Tensor passed to the Module. Similarly the caller will receive a view of each Tensor returned by the Module’s forward function.

    Warning

    Modifying inputs inplace is not allowed when using backward hooks and will raise an error.

    Parameters
  • hook (Callable) – The user-defined hook to be registered.

  • prepend (bool) – If true, the provided hook will be fired before all existing backward_pre hooks on this torch.nn.modules.Module. Otherwise, the provided hook will be fired after all existing backward_pre hooks on this torch.nn.modules.Module. Note that global backward_pre hooks registered with register_module_full_backward_pre_hook() will fire before all hooks registered by this method.

  • Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_load_state_dict_post_hook(hook)

    Register a post hook to be run after module’s load_state_dict is called.

    It should have the following signature::

    hook(module, incompatible_keys) -> None

    The module argument is the current module that this hook is registered on, and the incompatible_keys argument is a NamedTuple consisting of attributes missing_keys and unexpected_keys. missing_keys is a list of str containing the missing keys and unexpected_keys is a list of str containing the unexpected keys.

    The given incompatible_keys can be modified inplace if needed.

    Note that the checks performed when calling load_state_dict() with strict=True are affected by modifications the hook makes to missing_keys or unexpected_keys, as expected. Additions to either set of keys will result in an error being thrown when strict=True, and clearing out both missing and unexpected keys will avoid an error.

    Returns

    a handle that can be used to remove the added hook by calling handle.remove()

    Return type

    torch.utils.hooks.RemovableHandle

    register_parameter(name, param)

    Add a parameter to the module.

    The parameter can be accessed as an attribute using given name.

    Parameters
  • name (str) – name of the parameter. The parameter can be accessed from this module using the given name

  • param (Parameter or None) – parameter to be added to the module. If None, then operations that run on parameters, such as cuda, are ignored. If None, the parameter is not included in the module’s state_dict.

  • Return type
    register_state_dict_pre_hook(hook)

    Register a pre-hook for the state_dict() method.

    These hooks will be called with arguments: self, prefix, and keep_vars before calling state_dict on self. The registered hooks can be used to perform pre-processing before the state_dict call is made.

    requires_grad_(requires_grad=True)

    Change if autograd should record operations on parameters in this module.

    This method sets the parameters’ requires_grad attributes in-place.

    This method is helpful for freezing part of the module for finetuning or training parts of a model individually (e.g., GAN training).

    See locally-disable-grad-doc for a comparison between .requires_grad_() and several similar mechanisms that may be confused with it.

    Parameters

    requires_grad (bool) – whether autograd should record operations on parameters in this module. Default: True.

    Returns
    Return type

    Module

    set_extra_state(state)

    Set extra state contained in the loaded state_dict.

    This function is called from load_state_dict() to handle any extra state found within the state_dict. Implement this function and a corresponding get_extra_state() for your module if you need to store extra state within its state_dict.

    Parameters

    state (dict) – Extra state from the state_dict

    Return type
    state_dict(*args, destination=None, prefix='', keep_vars=False)

    Return a dictionary containing references to the whole state of the module.

    Both parameters and persistent buffers (e.g. running averages) are included. Keys are corresponding parameter and buffer names. Parameters and buffers set to None are not included.

    The returned object is a shallow copy. It contains references to the module’s parameters and buffers.

    Warning

    Currently state_dict() also accepts positional arguments for destination, prefix and keep_vars in order. However, this is being deprecated and keyword arguments will be enforced in future releases.

    Warning

    Please avoid the use of argument destination as it is not designed for end-users.

    Parameters
  • destination (dict, optional) – If provided, the state of module will be updated into the dict and the same object is returned. Otherwise, an OrderedDict will be created and returned. Default: None.

  • prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default: ''.

  • keep_vars (bool, optional) – by default the Tensor s returned in the state dict are detached from autograd. If it’s set to True, detaching will not be performed. Default: False.

  • Returns

    a dictionary containing a whole state of the module

    Return type

    Example:

    >>> # xdoctest: +SKIP("undefined vars")
    >>> module.state_dict().keys()
    ['bias', 'weight']
    to(*args, **kwargs)
    

    Move and/or cast the parameters and buffers.

    This can be called as

    to(device=None, dtype=None, non_blocking=False)

    Its signature is similar to torch.Tensor.to(), but only accepts floating point or complex dtypes. In addition, this method will only cast the floating point or complex parameters and buffers to dtype (if given). The integral parameters and buffers will be moved device, if that is given, but with dtypes unchanged. When non_blocking is set, it tries to convert/move asynchronously with respect to the host if possible, e.g., moving CPU Tensors with pinned memory to CUDA devices.

    See below for examples.

    This method modifies the module in-place.

    Parameters
  • device (torch.device) – the desired device of the parameters and buffers in this module

  • dtype (torch.dtype) – the desired floating point or complex dtype of the parameters and buffers in this module

  • tensor (torch.Tensor) – Tensor whose dtype and device are the desired dtype and device for all parameters and buffers in this module

  • memory_format (torch.memory_format) – the desired memory format for 4D parameters and buffers in this module (keyword only argument)

  • Returns
    Return type

    Module

    Examples:

    >>> # xdoctest: +IGNORE_WANT("non-deterministic")
    >>> linear = nn.Linear(2, 2)
    >>> linear.weight
    Parameter containing:
    tensor([[ 0.1913, -0.3420],
            [-0.5113, -0.2325]])
    >>> linear.to(torch.double)
    Linear(in_features=2, out_features=2, bias=True)
    >>> linear.weight
    Parameter containing:
    tensor([[ 0.1913, -0.3420],
            [-0.5113, -0.2325]], dtype=torch.float64)
    >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
    >>> gpu1 = torch.device("cuda:1")
    >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
    Linear(in_features=2, out_features=2, bias=True)
    >>> linear.weight
    Parameter containing:
    tensor([[ 0.1914, -0.3420],
            [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
    >>> cpu = torch.device("cpu")
    >>> linear.to(cpu)
    Linear(in_features=2, out_features=2, bias=True)
    >>> linear.weight
    Parameter containing:
    tensor([[ 0.1914, -0.3420],
            [-0.5112, -0.2324]], dtype=torch.float16)
    >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
    >>> linear.weight
    Parameter containing:
    tensor([[ 0.3741+0.j,  0.2382+0.j],
            [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
    >>> linear(torch.ones(3, 2, dtype=torch.cdouble))
    tensor([[0.6122+0.j, 0.1150+0.j],
            [0.6122+0.j, 0.1150+0.j],
            [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
    to_empty(*, device, recurse=True)
    

    Move the parameters and buffers to the specified device without copying storage.

    Parameters
  • device (torch.device) – The desired device of the parameters and buffers in this module.

  • recurse (bool) – Whether parameters and buffers of submodules should be recursively moved to the specified device.

  • Returns
    Return type

    Module

    train(mode=True)

    Set the module in training mode.

    This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. Dropout, BatchNorm,

    Parameters

    mode (bool) – whether to set training mode (True) or evaluation mode (False). Default: True.

    Returns
    Return type

    Module

    xpu(device=None)

    Move all model parameters and buffers to the XPU.

    This also makes associated parameters and buffers different objects. So it should be called before constructing optimizer if the module will live on XPU while being optimized.

    This method modifies the module in-place.

    Parameters

    device (int, optional) – if specified, all parameters will be copied to that device

    Returns
    Return type

    Module

    zero_grad(set_to_none=True)

    Reset gradients of all model parameters.

    See similar function under torch.optim.Optimizer for more context.

    Parameters

    set_to_none (bool) – instead of setting to zero, set the grads to None. See torch.optim.Optimizer.zero_grad() for details.

    Return type