添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
道上混的键盘  ·  Job Search·  1 月前    · 
冷静的课本  ·  .NET周刊【10月第3期 ...·  4 月前    · 
爱吹牛的瀑布  ·  crash on 'boolean ...·  7 月前    · 

摘要: 在量子力学中,薛定谔方程用于描述微观粒子运动状态随时间变化的规律,其重要意义不言而喻.在传统教学中薛定谔方程一般作为定义直接被引入或者由实验事实波粒二象性出发逐步导引建立从而被引入,但传统的导引建立方法具有一定跳跃性,逻辑不严谨,缺乏深层原理支撑,不利于部分学生的深入理解.本文旨在从对称性和守恒量存在一一对应关系的深层原理架构出发,以泰勒展开为基础进行数学推导,在学生已经具备一定量子力学和数学知识的基础上循序渐进地引入薛定谔方程.首先,文中介绍了传统的引入方法.其次,在回顾泰勒展开的基础上引入了泰勒平移的概念,形成新旧知识的有机结合并进一步激发学生创造性思维.最后,利用泰勒平移概念结合诺特定理自然引出了薛定谔方程.
创造性思维

Abstract: In quantum mechanics, Schrödinger equation is used to describe how the motion of microscopic particles changes with time, and its significance is self-evident. In traditional teaching, Schrödinger equation is usually introduced directly as a definition, or gradually guided and established by the wave-particle duality of experimental facts. However, the traditional guidance and construction methods have certain leaps, their logic is not rigorous, and they lack deep-seated principle support, which is not conducive to the in-depth understanding of some students. The purpose of this paper is to start from the deep-seated theoretical framework of symmetry and one-to-one correspondence of conservation quantities, carries out mathematical derivation on the basis of Taylor , s expansion, and gradually introduces Schrödinger equation on the basis of students , quantum mechanics and mathematical knowledge. Firstly, we introduce the traditional introduction methods. Secondly, on the basis of reviewing Taylor , s expansion, we introduce Taylor , s translation concept, which forms an organic combination of old and new knowledge and further stimulates students , creative thinking. Finally, the Schrödinger equation is naturally derived by using the concept of Taylor , s translation and Noether , s theorem.

Key words: Noether , s theorem, Taylor , s expansion, Schr?dinger equation, Taylor , s translation, creative thinking 王玉凤, 付柯, 王跃超, 隋林泓, 姜梦媛, 范亚茜, 李喜彬. 二维、三维无限深环形势阱中波函数的求解与可视化 [J]. 大学物理, 2023, 42(1): 55-. 李海凤, 陈康康. 无限深方势阱本征值和本征态的三种求解方法 [J]. 大学物理, 2022, 41(2): 26-. 李海凤, 王欣茂. 一维双方势垒量子隧穿的研究及其数值模拟 [J]. 大学物理, 2022, 41(1): 15-. 刘观福, 余 聪. 用松弛法解薛定谔方程 [J]. 大学物理, 2021, 40(3): 79-. 黄永义. 薛定谔方程的教学探讨 [J]. 大学物理, 2020, 39(06): 25-26. 罗 光, 谭 鑫, 刘 平. 傅里叶变换法求解两类简单的薛定谔方程 [J]. 大学物理, 2020, 39(03): 24-27. 林琼桂. 盖根鲍尔多项式的一些物理应用 [J]. 大学物理, 2019, 38(1): 13-. 彭永刚. 含时薛定谔方程求解在量子搜索算法设计中的应用 [J]. 大学物理, 2018, 37(9): 17-24. 孔红艳. Airy 波包及其自加速效应( 续1) [J]. 大学物理, 2018, 37(1): 52-54. 孔红艳. Airy波包及其自加速效应 [J]. 大学物理, 2017, 36(12): 28-33. 向梅 马晓栋 路俊哲 魏蔚. 关于量子力学中波函数复数表示的讨论 [J]. 大学物理, 2017, 36(11): 32-34. 江俊勤,沈华嘉. 有限深多势阱中电子能态的数值研究 [J]. 大学物理, 2016, 35(11): 13-17. 陈凌蛟[] 侯吉旋[]. 玻尔兹曼分布的严格推导 [J]. 大学物理, 2015, 34(3): 60-60. 地址:北京市海淀区新街口外大街19号 北京师范大学科技楼C区701室 邮编: 100875
电话: 010-58808024 010-58805411 E-mail:[email protected]
本系统由 北京玛格泰克科技发展有限公司 设计开发