添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer
Nan Fang Yi Ke Da Xue Xue Bao. 2023 Nov 20; 43(11): 1865–1873.
PMCID: PMC10713471

Language: Chinese | English

不同滴度MOG-IgG抗体在MOG抗体相关疾病中的诊断和临床意义:一项单中心回顾性研究

Diagnostic value of low versus high titers of MOG-IgG and their clinical implications in myelin oligodendrocyte glycoprotein antibody-associated disease: a retrospective singlecenter study

李 子昂

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 李 子昂

王 冬梅

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 王 冬梅

陈 金玉

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 陈 金玉

黄 小珍

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 黄 小珍

吴 永明

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Find articles by 吴 永明

胡 亚芳

南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 南方医科大学南方医院神经内科,广东 广州 510515, Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China 表现差异性很大,包括视神经病变、大的或纵向广泛的脑部T2病变以及轮廓不清的脊髓病变 [ 8 , 9 ] 。由于MOGAD的临床和影像学特征缺乏特异性,很难与其他脱髓鞘性疾病,特别是MS和NMOSD进行区分。因此,在MOGAD的诊断中,血清MOG-IgG的检测至关重要,这一结果也被视为诊断的金标准 [ 10 ]

血清MOG-IgG的高滴度阳性,可作为MOGAD的重要诊断依据。然而,低滴度结果解读需要高度谨慎。由于MOG-IgG的检出方法有一定的假阳性可能,在其他疾病中也有报道(如MS和水通道蛋白4(AQP4)相关的NMOSD)中出现 [ 11 , 12 ] 。有研究指出MS患者中,假阳性的比例大大增加,且低滴度(1∶20~1∶40)患者假阳性率高于高滴度患者(≥1:100)。通过对不同滴度患者进行多中心、盲法比较,发现高滴度组患者在不同中心检测中具有高度一致性,结果均为阳性,而低滴度样本一致性较差 [ 13 ] 。基于上述研究,对低滴度的结果进行判读仍然是一个挑战 [ 13 ]

为探究不同滴度MOG-IgG的意义,本研究纳入了在南方医院神经内科实验室采用细胞免疫法(CBA)检测出MOG-IgG抗体的患者,分析其临床特征,并比较了低滴度和高滴度MOG-IgG抗体在MOGAD中的诊断价值。

1. 资料和方法

1.1. 研究对象

本研究纳入2020年12月~2022年12月就诊于南方医科大学南方医院神经科且血清CBA法检测出MOG-IgG阳性的入院患者。排除了数据不完整或在随访过程中丢失的患者。本研究按照《赫尔辛基宣言》的规定进行,并获得南方医科大学南方医院伦理委员会的批准(NFEC-2022-180)。所有入组患者均签署知情同意书,并对其信息进行了去标识化处理。

1.2. 数据收集

采用电子病历系统收集数据。我们收集了患者的社会人口学信息、诊断和临床特征。记录了神经症状、体征、头颅磁共振成像或计算机断层扫描的结果、实验室检查结果(包括白细胞计数、脑脊液常规生化、甲状腺功能和其他自身免疫抗体等)。此外,还收集了患者的治疗方案以及预后情况。预后评估使用改良Rankin量表(mRS),评分≤2表示预后良好。

1.3. 细胞免疫法检测

使用之前报道的细胞免疫法对MOG-IgG抗体进行检测 [ 14 ] 。使用pcDNA3.1-MOG-eGFP质粒转染HEK293T细胞,该质粒包含MOG(NM_206809.4)全长cDNA片段,并且该片段C端与GFP融合。培养48 h后,转染细胞用乙酸酮固定10 min,用PBST洗涤,然后用10%山羊血清封闭。将患者的血清或脑脊液检测样本与细胞在4 ℃孵育过夜。PBST洗涤3次后,细胞与DyLight 550标记的山羊抗人IgG(Abcam)二抗在室温下孵育1 h。经过进一步洗涤后,使用IX73倒置显微镜(Olympus)拍摄荧光图像。抗NMDAR、AQP4、GFAP和其他自身抗体的检测方法与其相似。

1.4. 统计学分析

所有的数据分析和统计图表制作均使用SPSS 22.0和Graph Pad Prism 9.0完成。符合正态分布的连续变量以均数±标准差表示。使用两独立样本 t 检验进行组间比较。非正态分布的连续变量以中位数和最大值、最小值范围描述,使用秩和检验进行数据比较。分类参数以频数和百分比表示,使用卡方检验进行分析。统计学上以 P < 0.05为差异有统计学意义。

2. 结果

2.1. 患者临床特征

本中心实验室共检测出血清MOG-IgG抗体阳性患者47例。其中,由于数据不完整( n =4)或就诊其他科室( n =7),排除了11例患者。最终,纳入了本科室住院患者36例( 图 1 )。患者的人口学信息和临床特征( 表 1 )。大多数患者被诊断为MOGAD(77.78%),其次是AQP4-IgG相关的NMOSD(11.11%)、周围神经病(5.56%)、MS(2.78%)和短暂性脑缺血发作(2.70%)。入组患者中最常见的临床表现为感觉异常(53.57%),其次是肢体无力(42.86%)、头晕(35.71%)、头痛(32.14%)、精神障碍(28.57%)和视力丧失(21.43%)。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-1.jpg

患者纳入流程

Flowchart of patient enrollment.

表 1

患者人口学特征及基本临床信息

Demographic information and clinical features of the patients positive for serum MOG-IgG

Characteristic Value
Number of patients 36
Female (%) 20/36(55.56%)
Diagnosis
MOGAD (%) 28/36(77.78%)
AQP4-IgG related NMOSD (%) 4/36 (11.11%)
MS (%) 1/36(2.78%)
Peripheral neuropathy (%) 2/36(5.56%)
TIA (%) 1/36(2.78%)
Clinical symptoms
Paresthesia (%) 19/36(52.78%)
Limb weakness (%) 17/36(47.22%)
Dizziness (%) 11/36 (30.56%)
Headache (%) 9/36 (25%)
Vision loss (%) 9/36 (25%)
Psychiatric disturbances (%) 8/36 (22.22%)
Therapy
Immunotherapy (%) 30/36(83.33%)
Pulse steroid therapy (%) 27/36 (75%)
IVIG (%) 8/36 (22.22%)
Plasma exchange (%) 3/36(8.33%)
Prognosis
mRS at discharge, 0-2 (%) 24/36(66.67%)
mRS during follow-up, 0-2 (%) 24/33(72.73%)

2.2. 实验室检查及影像学表现

患者实验室检查结果( 表 2 )。入院时的外周血白细胞计数以及脑脊液中的白细胞、葡萄糖和蛋白水平均在正常范围内。脑脊液细胞学结果提示白细胞轻度升高,以淋巴细胞为主。此外,有8例患者的脑脊液中出现寡克隆带阳性,但只有1例患者MRI表现符合典型的多发性硬化影像特点。

表 2

实验室检查结果

Laboratory test results of the patients positive for serum MOG-IgG

Characteristic Median (Range)
Blood the counts on admission ( n =36)
WBC (×10 9 ) 7.75 (4.24, 19.48)
LYM (×10 9 ) 1.93 (0.72, 4.38)
NEU (×10 9 ) 4.66 (1.41, 17.59)
NLR 2.16 (1.03, 22.78)
CRP(mg/L) ( n =36) 1.03 (0, 59.84)
ESR(mm/1 h) ( n =28) 7.5 (2, 68)
CSF results ( n =32)
Protein (g/L) 0.385 (0.16, 6.00)
Chloride (mmol/L) 127.0 (118.1, 131.7)
Glucose (mmol/L) 3.52 (2.51, 9.66)
White blood cell counts (/μL) 1 (0, 520)
CSF OCB positive (%) 8/29 (27.59%)
CSF cytology ( n =29)
White blood cell counts (/0.5 mL) 300 (10, 30 000)
LYM% 60 (0, 95)
NEU% 5 (0, 60)
MONO% 0 (0, 80)
Thyroid function ( n =19)
FT3 (pg/mL) 2.66 (2.21, 3.32)
FT4 (ng/dl) 1.01 (0.82, 1.59)
TSH (mIU/L) 1.11 (0.234, 4.193)
Autoimmune antibodies ( n =27)
Negative (%) 24/27 (88.89%)
ANCA ( n =19)
CANCA-Pr3 (U/mL) 1.4 (1.1, 2.3)
PANCA-Mpo (U/mL) 1.2 (0.9, 8.1)
MOG antibody titers in serum ( n =36)
≥1:100 (%) 17/36 (47.22%)
MOG antibody positive in CSF ( n =25) 5/25 (20%)
Other antibody in serum ( n =36)
AQP4 (%) 4/36 (11.11%)
NMDAR (%) 1/36 (2.78%)
Other antibody in CSF ( n =25)
GFAP (%) 2/25 (8%)
NMDAR (%) 1/25 (4%)

入组的36例患者的血清中均被检测出MOG-IgG抗体,其中高滴度(≥1∶100)的MOG-IgG占47.22%。在25例患者脑脊液样本中,有5例检测到MOG-IgG阳性。此外,患者还合并其他自身抗体,其中4例患者血清合并抗AQP4抗体,1例患者血清中合并抗NMDAR抗体,1例脑脊液中检测到抗GFAP抗体,以及1例患者脑脊液中同时检测到抗NMDAR和抗GFAP抗体。值得一提的是其中一名患者的血清和脑脊液中均检测到MOG和NMDAR抗体(MOG-IgG滴度1∶100,NMDAR抗体滴度1∶320)。该患者以头痛、头晕、精神和行为异常以及癫痫等症状作为主要临床表现。MRI显示左侧颞枕皮质轻度肿胀。经过激素治疗、静脉丙球治疗和免疫抑制剂治疗后,患者的症状略有改善,偶有癫痫发作。该患者的诊断为MOGAD与抗NMDA受体脑炎重叠综合征。

影像检查方面,1例患者缺乏影像数据,2例患者影像无明显异常,其余患者均提示异常MRI表现( 图 2 ~ ~5 5 )。影像学主要表现为T2加权和FLAIR序列异常信号,病变边界不清;最常见病变部位为脑室周围白质(45.71%),其次是脊髓(22.86%)和皮层/皮质下区域(20%)。病变部位的结果总结( 表 3 ),典型的影像病( 图 2 ~ ~5 5 )。由于脑脊液寡克隆带阳性结果常提示MS可能,我们重点分析了阳性患者的MRI特点。然而,只有1例患者表现出典型的MS影像学表现( 图 6 )。

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-2.jpg

颅内大范围病变影像

Large intracranial lesion imaging in a representative case. Multiple large patchy abnormal signals with unclear boundary can be seen in the white matter area, periventricular area and basal ganglia area of the bilateral cerebral hemisphere. The lesions show low signal on T1-weighted image ( A - D ) and high signals on T2-weighted image ( E - H ) and fluid attenuated inversion recovery (FLAIR) images ( I - L ). The lesions are not obviously enhanced ( M - P ).

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-5.jpg

脊髓病变影像

Spinal cord lesion imaging of a patient. Small patches of lesions can be seen in the spinal cord at C7-T3 segments ( A - F , August, 2020). The lesions show low signals on T1-weighted image and high signals on T2-weighte images. The lesions are involve mainly the right lateral funiculus of the spinal cord (indicated by arrow). During the follow-up, the lesions were increased and expanded from C7-T4 segments ( G - J , September, 2021). The left part of the spinal cord was also involved (indicated by arrow).

表 3

MRI表现及病变部位

MRI findings and distribution of the lesions

Characteristic Value
Lesion sites ( n =35)
Normal (%) 2/35(5.71%)
Cortical/subcortical (%) 7/35 (20%)
Deep white matter l (%) 1/35(2.86%)
Periventricular white matter (%) 16/35(45.71%)
Corpus callosum (%) 2/35(5.71%)
Basal ganglia (%) 4/35 (11.43%)
Thalamus (%) 2/35(5.71%)
Brainstem (%) 2/35(5.71%)
Cerebellum (%) 3/35(8.57%)
Spinal (%) 8/35 (22.86%)
Peripheral nerves (%) 2/35(5.71%)
An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-6.jpg

MOGAD患者与MS患者影像对比

Comparison of imaging findings between a MOGAD patient and an multiple sclerosis (MS) patient. The MRI results were compared between a patient with MS ( A - D ) and a patient with MOGAD ( E - H ). In the images of the MS patient, multiple patchy oval lesions with clear boundaries were observed in the bilateral periventricular white matter and the centrum ovale, presenting with high signals on T2-weighted image ( A ) and T2-FLAIR image ( B ), and slightly low signals on T1-FLAIR image ( C ) and DWI ( D ). While in the images of the MOGAD patient, multiple spotty and patchy abnormal signals can be seen in the bilateral periventricular white matter and the centrum ovale. The lesions show high signals on T2-weighted image ( E ) and T2-FLAIR image ( F ) and low signals on T1-weighted image ( G ). No obvious abnormal signal is seen on diffusion weighted imaging image ( H ).

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-3.jpg

治疗前后对比影像

Comparison of imaging findings before and after treatment in another case. The left frontotemporal cortex was swollen, and patchy abnormal signals was low on T1-weighted image ( A - D ), slightly high on T2-weightd image ( E - H ) and FLAIR image ( I - L ). The lesions were slightly enhanced on T1 with contrast ( M - P ). After treatment, the swelling of the left frontotemporal cortex was reduced ( a - p ). There were several new nodular lesions showing low signals on T1 and high signals on T2 and FLAIR images (indicated by arrow) with slight enhancement.

An external file that holds a picture, illustration, etc. Object name is nfykdxxb-43-11-1865-4.jpg

颅内小范围病变影像

Small intracranial lesion imaging in a typical case. Multiple spotty and patchy abnormal signals can be seen in the bilateral periventricular white matter and the centrum ovale. The lesions show slightly low signal or isosignal on T1-weighted image ( A - C ) and high signals on T2-weighted image ( D , E ) and FLAIR images ( F - H ). No obvious enhancement can be seen ( I , J ).

2.3. 治疗和预后

对患者的治疗方案进行分析,结果提示83.33%的患者接受了免疫治疗,包括静脉激素冲击治疗、静脉免疫球蛋白治疗(IVIG)和血浆置换治疗,且IVIG及血浆置换治疗均是在静脉激素冲击治疗基础上进行的。大多数患者在出院时预后良好,占比66.67%。在6个月随访时,预后良好的患者比例增加到72.73%。

2.4. 高、低滴度患者临床资料对比分析

以1∶100为界,将患者分为低滴度组( n =19)和高滴度组( n =17)进行比较。两组在一般人口学特征、入院时白细胞计数、中性粒细胞计数、C-反应蛋白、红细胞沉降率、脑脊液白细胞计数和蛋白水平等方面均没有显著差异。然而,高滴度组淋巴细胞计数显著降低( P =0.025),中性粒细胞与淋巴细胞比值(NLR)显著升高( P =0.045),血清游离甲状腺素(FT4)水平显著升高( P =0.033),脑脊液葡萄糖水平显著升高( P =0.007)。在治疗方面,高滴度组患者更倾向于联合IVIG或者血浆置换强化治疗( P =0.050)。此外,两组患者在MRI病变部位及预后方面没有显著差异( 表 4 )。两组患者在被明确诊断为MOGAD患者的比例、AQP4-IgG的血清阳性率或其他红旗征象(如脑室周围病变和脑脊液寡克隆带阳性)方面也没有显著差异。

表 4

高低滴度组患者临床特点比较

Comparisons of clinical features between patients with low and high titers of MOG-IgG

Characteristic < 1:100 ( n =19) ≥1:100 ( n =17)
* P < 0.05 (Chi-square test).
Age≤40 years (%) 9/19 (47.38%) 7/17 (41.18%) 0.999
Gender (male/female) 9/10 8/9 0.999
Acute/subacute onset (%) 7/12 7/10 0.743
MOGAD (%) 15/19 (78.9%) 13/17 (70.59%) 0.706
Laboratory results (Median, range)
WBC (×10 9 ) 7.03 (4.39, 17.56) 9.80 (4.24, 19.48) 0.397
LYM (×10 9 ) 2.07 (0.97, 4.38) 1.695 (0.72, 3.85) 0.025
NEU (×10 9 ) 4.18 (2.02, 10.78) 4.61 (1.41, 17.59) 0.196
NLR 1.98 (1.03, 8.62) 2.660 (1.12, 22.78) 0.045*
CRP (mg/L) 1.22 (0.00, 18.88) 0.840 (0.20, 59.84) 0.447
ESR (mm/1 h) 8 (2, 15) 10 (2, 68) 0.158
CSF results
Protein (g/L) 0.38 (0.21, 0.60) 0.410 (0.19, 3.99) 0.557
Chloride (mmol/L) 126.5 (118.1, 130.6) 127.2 (119.3, 131.7) 0.595
Glucose (mmol/L) 3.29 (2.51, 3.93) 3.60 (2.92, 4.40) 0.007*
White blood cell counts (/μL) 0 (0, 296) 1.5 (0, 520) 0.383
CSF OCB positive (%) 3/12 (25%) 5/17 (29.41%) 0.999
Thyroid function
FT3 (pg/mL) 2.59 (2.21, 3.32) 2.68 (0.97, 3.26) 0.619
FT4 (ng/dl) 0.96 (0.82, 1.13) 1.13 (0.82, 1.59) 0.033*
TSH (mIU/L) 1.11 (0.70, 1.75) 0.96 (0.23, 4.19) 0.661
Lesion sites
Supratentorium/subtentorium/spinal cord 11/4/2 10/7/5 0.464
Periventricular white matter/others 9/10 7/9 0.999
Therapy
Immunotherapy (%) 15/19 (75%) 14/17 (88.24%) 0.999
IVIG+plasma exchange/pulse steroid therapy 2/13 7/7 0.050
Prognosis
mRS at discharge, 0-2/3-6 14/5 10/7 0.483
mRS during follow-up, 0-2/3-6 12/4 ( n =16) 12/5 0.999

3. 讨论

与既往研究不同的是,本研究提示血清中低滴度和高滴度的MOG-IgG在MOGAD的确诊中具有类似的价值。本研究纳入了36例血清MOG-IgG抗体阳性的患者,其中28例患者可以通过临床表现及影像学证据被诊断为MOGAD,低滴度组和高滴度组之间的分布相似。之前的研究已报道低滴度的MOG-IgG具有较低的鉴别能力,在多发性硬化以及其他神经系统疾病中均有检出的报道,因此在诊断时需要谨慎考虑低滴度结果 [ 13 ]

从大型多中心研究中发现,MOGAD的临床特征可总结为包括ADEM、视神经炎、脊髓炎以及脑膜脑炎和脑干脑炎等多种类型,其中成年人最常见的临床表型为视神经炎 [ 5 - 7 ] 。在我们的研究中,MOGAD患者的临床表现主要涉及脑炎,视神经炎发生的频率较低,这可能与研究中的患者主要来自神经科有关,而具有更典型视神经炎表现的患者更有可能在眼科接受治疗。我们建议对于视神经炎的患者,要加强MOG-IgG抗体筛查。

AQP4-IgG相关的NMOSD是MOGAD的常见鉴别诊断之一,这两种疾病在临床表现、影像特征和治疗方法上非常相似,诊断也主要基于抗体检测 [ 15 ] 。以往研究指出,双阳性情况较为罕见,而且当出现双阳性时,AQP4-IgG滴度通常较高 [ 16 ] 。然而,在我们的研究中,4例患者中有3例的MOG-IgG和AQP4-IgG的滴度相似,范围从1∶30到1∶300。仅根据患者现有的临床资料,无法明确患者的临床表现是由单一或者共同抗体所致。尽管依据目前的国内外研究观点,普遍认为AQP4-IgG致病作用更强。这引发了一个问题,是否同时存在AQP4-IgG和MOG-IgG共同致病的情况相关,而此类患者是否应该诊断考虑为两种抗体重叠致病。在自身免疫性疾病中,多种抗体重叠致病的现象已有明确报道,例如MOGAD或NMOSD与抗NMDA受体脑炎重叠 [ 17 ] ,NMOSD与干燥综合征、系统性红斑狼疮或系统性硬化症重叠 [ 18 - 20 ] 。MOG与AQP4抗体间的重叠需要进一步思考与印证。

多发性硬化症是MOGAD的另一常见鉴别诊断。脑脊液中的寡克隆带和脑室周围病变在MS患者中更为常见 [ 21 ] 。虽然我们研究中的35例患者中有16例出现脑室周围病变,29例患者中有8例脑脊液中寡克隆带阳性,但只有1例患者符合典型的MS表现。因此,我们认为寡克隆带和脑室周病变并不能作为区分MS与MOGAD的标志,在鉴别MOGAD和MS时应结合更多临床信息慎重考虑这些标志。

我们在低滴度组和高滴度组之间发现了几项显著的实验室检测差异。高滴度患者表现出更高的NLR、更高的FT4水平和更高的脑脊液葡萄糖水平。NLR已被认为是自身免疫性脑炎严重程度的独立风险因素 [ 22 - 24 ] 。升高的FT4水平是应激的指标 [ 25 ] 。一些研究已经表明自身免疫性脑炎患者的葡萄糖水平正常 [ 26 ] ,因此高滴度患者葡萄糖水平升高的意义尚不清楚。我们推测,高滴度组中升高的NLR和FT4水平可能表明高滴度患者可能具有更强的炎性反应和应激反应。

综上,本研究对于MOGAD的诊断提供了一些参考,特别是对低滴度和高滴度的血清MOG-IgG抗体阳性结果提出了新的解释。我们认为明确诊断需要综合评估临床具体情况,考虑各种诊断指标,而不能仅仅依靠抗体滴度。

本研究强调了血清中低滴度和高滴度的MOG-IgG抗体阳性结果在MOGAD的诊断中的重要性,低滴度结果不应忽视,需要谨慎考虑。AQP4-IgG和MOGIgG抗体在NMOSD病例中的共存对诊断提出了挑战,对于诊断概念的明确有待进一步的研究。实验室检测结果显示低滴度组和高滴度组之间存在显著差异,可能与疾病严重程度和应激水平有关。

Biographies

李子昂,在读博士研究生,E-mail: moc.qq@0352165031

王冬梅,博士,E-mail: moc.qq@30mdgnaw

Funding Statement

南方医科大学南方医院院长基金(2019B007);国家自然科学基金(82201505);南方医科大学南方医院临床研究专项(2021CR020)

Funding Statement

Supported by National Natural Science Foundation of China (82201505)

References

1. Sechi, Cacciaguerra L, Chen JJ, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): a review of clinical and MRI features, diagnosis, and management. Front Neurol. 2022; 13 :885218. doi: 10.3389/fneur.2022.885218. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
2. Lebar R, Lubetzki C, Vincent C, et al. The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane. Clin Exp Immunol. 1986; 66 (2):423–34. [ PMC free article ] [ PubMed ] [ Google Scholar ]
3. Mader S, Gredler V, Schanda K, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation. 2011; 8 :184. doi: 10.1186/1742-2094-8-184. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
4. Gospe SM Ⅲ, Chen JJ, Bhatti MT. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment. Eye. 2021; 35 (3):753–68. doi: 10.1038/s41433-020-01334-8. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
5. Fadda G, Armangue T, Hacohen Y, et al. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care. Lancet Neurol. 2021; 20 (2):136–49. doi: 10.1016/S1474-4422(20)30432-4. [ PubMed ] [ CrossRef ] [ Google Scholar ]
6. Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligo-dendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021; 20 (9):762–72. doi: 10.1016/S1474-4422(21)00218-0. [ PubMed ] [ CrossRef ] [ Google Scholar ]
7. Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol. 2019; 15 (2):89–102. doi: 10.1038/s41582-018-0112-x. [ PubMed ] [ CrossRef ] [ Google Scholar ]
8. Dubey D, Pittock SJ, Krecke KN, et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody. JAMA Neurol. 2019; 76 (3):301–9. doi: 10.1001/jamaneurol.2018.4053. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
9. Jurynczyk M, Geraldes R, Probert F, et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis. Brain. 2017; 140 (3):617–27. doi: 10.1093/brain/aww350. [ PubMed ] [ CrossRef ] [ Google Scholar ]
10. Chun BY, Cestari DM. Myelin oligodendrocyte glycoprotein-IgG-associated optic neuritis. Curr Opin Ophthalmol. 2018; 29 (6):508–13. doi: 10.1097/ICU.0000000000000520. [ PubMed ] [ CrossRef ] [ Google Scholar ]
11. Pace S, Orrell M, Woodhall M, et al. Frequency of MOG-IgG in cerebrospinal fluid versus serum. J Neurol Neurosurg Psychiatry. 2022; 93 (3):334–5. doi: 10.1136/jnnp-2021-326779. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
12. Held F, Kalluri SR, Berthele A, et al. Frequency of myelin oligodendrocyte glycoprotein antibodies in a large cohort of neurological patients. Mult Scler J Exp Transl Clin. 2021; 7 (2):20552173211022767. [ PMC free article ] [ PubMed ] [ Google Scholar ]
13. Sechi, Buciuc M, Pittock SJ, et al. Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing. JAMA Neurol. 2021; 78 (6):741–6. doi: 10.1001/jamaneurol.2021.0912. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
14. Xu KB, Wang DM, He Y, et al. Identification of anti-collapsin response mediator protein 2 antibodies in patients with encephalitis or encephalomyelitis. Front Immunol. 2022; 13 :854445. doi: 10.3389/fimmu.2022.854445. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
15. Hamid SHM, Whittam D, Saviour M, et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease vs aquaporin 4 IgG disease. JAMA Neurol. 2018; 75 (1):65–71. doi: 10.1001/jamaneurol.2017.3196. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
16. Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria. Lancet Neurol. 2023; 22 (3):268–82. doi: 10.1016/S1474-4422(22)00431-8. [ PubMed ] [ CrossRef ] [ Google Scholar ]
17. Fan SY, Xu Y, Ren HT, et al. Comparison of myelin oligodendrocyte glycoprotein (MOG)-antibody disease and AQP4-IgG-positive neuromyelitis optica spectrum disorder (NMOSD) when they co-exist with anti-NMDA (N-methyl-D-aspartate) receptor encephalitis. Mult Scler Relat Disord. 2018; 20 :144–52. doi: 10.1016/j.msard.2018.01.007. [ PubMed ] [ CrossRef ] [ Google Scholar ]
18. Alharbi S, Ahmad Z, Bookman AA, et al. Epidemiology and survival of systemic sclerosis-systemic lupus erythematosus overlap syndrome. J Rheumatol. 2018; 45 (10):1406–10. doi: 10.3899/jrheum.170953. [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Houen G, Trier NH. Epstein-barr virus and systemic autoimmune diseases. Front Immunol. 2020; 11 :587380. [ PMC free article ] [ PubMed ] [ Google Scholar ]
20. Liu LQ, Tang L, Zhang L, et al. The first case report of preschool-onset SS/SLE coexisting with NMOSD of Chinese origin. Front Immunol. 2022; 13 :887041. doi: 10.3389/fimmu.2022.887041. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015; 28 (3):193–205. doi: 10.1097/WCO.0000000000000206. [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Liu ZW, Li YM, Wang YY, et al. The neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios are independently associated with the severity of autoimmune encephalitis. Front Immunol. 2022; 13 :911779. doi: 10.3389/fimmu.2022.911779. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Zeng ZL, Wang CJ, Wang BJ, et al. Prediction of neutrophil-to-lymphocyte ratio in the diagnosis and progression of autoimmune encephalitis. Neurosci Lett. 2019; 694 :129–35. doi: 10.1016/j.neulet.2018.12.003. [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Wang BJ, Wang CJ, Feng JL, et al. Clinical features, treatment, and prognostic factors in neuronal surface antibody-mediated severe autoimmune encephalitis. Front Immunol. 2022; 13 :890656. doi: 10.3389/fimmu.2022.890656. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Shivhare A, Jain A, Sharma JP, et al. Intravascular volume status and stress markers in patients observing long and short duration of fasting: a prospective single blinded observational study. J Clin Anesth. 2023; 86 :110992. doi: 10.1016/j.jclinane.2022.110992. [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Hoang H, Robinson-Papp J, Mu L, et al. Determining an infectious or autoimmune etiology in encephalitis. Ann Clin Transl Neurol. 2022; 9 (8):1125–35. doi: 10.1002/acn3.51608. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University