李 子昂
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
王 冬梅
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
陈 金玉
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
黄 小珍
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
吴 永明
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
胡 亚芳
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
南方医科大学南方医院神经内科,广东 广州 510515,
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
表现差异性很大,包括视神经病变、大的或纵向广泛的脑部T2病变以及轮廓不清的脊髓病变
[
8
,
9
]
。由于MOGAD的临床和影像学特征缺乏特异性,很难与其他脱髓鞘性疾病,特别是MS和NMOSD进行区分。因此,在MOGAD的诊断中,血清MOG-IgG的检测至关重要,这一结果也被视为诊断的金标准
[
10
]
。
血清MOG-IgG的高滴度阳性,可作为MOGAD的重要诊断依据。然而,低滴度结果解读需要高度谨慎。由于MOG-IgG的检出方法有一定的假阳性可能,在其他疾病中也有报道(如MS和水通道蛋白4(AQP4)相关的NMOSD)中出现
[
11
,
12
]
。有研究指出MS患者中,假阳性的比例大大增加,且低滴度(1∶20~1∶40)患者假阳性率高于高滴度患者(≥1:100)。通过对不同滴度患者进行多中心、盲法比较,发现高滴度组患者在不同中心检测中具有高度一致性,结果均为阳性,而低滴度样本一致性较差
[
13
]
。基于上述研究,对低滴度的结果进行判读仍然是一个挑战
[
13
]
。
为探究不同滴度MOG-IgG的意义,本研究纳入了在南方医院神经内科实验室采用细胞免疫法(CBA)检测出MOG-IgG抗体的患者,分析其临床特征,并比较了低滴度和高滴度MOG-IgG抗体在MOGAD中的诊断价值。
1. 资料和方法
1.1. 研究对象
本研究纳入2020年12月~2022年12月就诊于南方医科大学南方医院神经科且血清CBA法检测出MOG-IgG阳性的入院患者。排除了数据不完整或在随访过程中丢失的患者。本研究按照《赫尔辛基宣言》的规定进行,并获得南方医科大学南方医院伦理委员会的批准(NFEC-2022-180)。所有入组患者均签署知情同意书,并对其信息进行了去标识化处理。
1.2. 数据收集
采用电子病历系统收集数据。我们收集了患者的社会人口学信息、诊断和临床特征。记录了神经症状、体征、头颅磁共振成像或计算机断层扫描的结果、实验室检查结果(包括白细胞计数、脑脊液常规生化、甲状腺功能和其他自身免疫抗体等)。此外,还收集了患者的治疗方案以及预后情况。预后评估使用改良Rankin量表(mRS),评分≤2表示预后良好。
1.3. 细胞免疫法检测
使用之前报道的细胞免疫法对MOG-IgG抗体进行检测
[
14
]
。使用pcDNA3.1-MOG-eGFP质粒转染HEK293T细胞,该质粒包含MOG(NM_206809.4)全长cDNA片段,并且该片段C端与GFP融合。培养48 h后,转染细胞用乙酸酮固定10 min,用PBST洗涤,然后用10%山羊血清封闭。将患者的血清或脑脊液检测样本与细胞在4 ℃孵育过夜。PBST洗涤3次后,细胞与DyLight 550标记的山羊抗人IgG(Abcam)二抗在室温下孵育1 h。经过进一步洗涤后,使用IX73倒置显微镜(Olympus)拍摄荧光图像。抗NMDAR、AQP4、GFAP和其他自身抗体的检测方法与其相似。
1.4. 统计学分析
所有的数据分析和统计图表制作均使用SPSS 22.0和Graph Pad Prism 9.0完成。符合正态分布的连续变量以均数±标准差表示。使用两独立样本
t
检验进行组间比较。非正态分布的连续变量以中位数和最大值、最小值范围描述,使用秩和检验进行数据比较。分类参数以频数和百分比表示,使用卡方检验进行分析。统计学上以
P
< 0.05为差异有统计学意义。
2. 结果
2.1. 患者临床特征
本中心实验室共检测出血清MOG-IgG抗体阳性患者47例。其中,由于数据不完整(
n
=4)或就诊其他科室(
n
=7),排除了11例患者。最终,纳入了本科室住院患者36例(
)。患者的人口学信息和临床特征(
)。大多数患者被诊断为MOGAD(77.78%),其次是AQP4-IgG相关的NMOSD(11.11%)、周围神经病(5.56%)、MS(2.78%)和短暂性脑缺血发作(2.70%)。入组患者中最常见的临床表现为感觉异常(53.57%),其次是肢体无力(42.86%)、头晕(35.71%)、头痛(32.14%)、精神障碍(28.57%)和视力丧失(21.43%)。
表 1
患者人口学特征及基本临床信息
Demographic information and clinical features of the patients positive for serum MOG-IgG
Characteristic
|
Value
|
Number of patients
|
36
|
Female (%)
|
20/36(55.56%)
|
Diagnosis
|
|
MOGAD (%)
|
28/36(77.78%)
|
AQP4-IgG related NMOSD (%)
|
4/36 (11.11%)
|
MS (%)
|
1/36(2.78%)
|
Peripheral neuropathy (%)
|
2/36(5.56%)
|
TIA (%)
|
1/36(2.78%)
|
Clinical symptoms
|
|
Paresthesia (%)
|
19/36(52.78%)
|
Limb weakness (%)
|
17/36(47.22%)
|
Dizziness (%)
|
11/36 (30.56%)
|
Headache (%)
|
9/36 (25%)
|
Vision loss (%)
|
9/36 (25%)
|
Psychiatric disturbances (%)
|
8/36 (22.22%)
|
Therapy
|
|
Immunotherapy (%)
|
30/36(83.33%)
|
Pulse steroid therapy (%)
|
27/36 (75%)
|
IVIG (%)
|
8/36 (22.22%)
|
Plasma exchange (%)
|
3/36(8.33%)
|
Prognosis
|
|
mRS at discharge, 0-2 (%)
|
24/36(66.67%)
|
mRS during follow-up, 0-2 (%)
|
24/33(72.73%)
|
2.2. 实验室检查及影像学表现
患者实验室检查结果(
)。入院时的外周血白细胞计数以及脑脊液中的白细胞、葡萄糖和蛋白水平均在正常范围内。脑脊液细胞学结果提示白细胞轻度升高,以淋巴细胞为主。此外,有8例患者的脑脊液中出现寡克隆带阳性,但只有1例患者MRI表现符合典型的多发性硬化影像特点。
表 2
实验室检查结果
Laboratory test results of the patients positive for serum MOG-IgG
Characteristic
|
Median (Range)
|
Blood the counts on admission (
n
=36)
|
|
WBC (×10
9
)
|
7.75 (4.24, 19.48)
|
LYM (×10
9
)
|
1.93 (0.72, 4.38)
|
NEU (×10
9
)
|
4.66 (1.41, 17.59)
|
NLR
|
2.16 (1.03, 22.78)
|
CRP(mg/L)
(
n
=36)
|
1.03 (0, 59.84)
|
ESR(mm/1 h) (
n
=28)
|
7.5 (2, 68)
|
CSF results (
n
=32)
|
|
Protein (g/L)
|
0.385 (0.16, 6.00)
|
Chloride (mmol/L)
|
127.0 (118.1, 131.7)
|
Glucose (mmol/L)
|
3.52 (2.51, 9.66)
|
White blood cell counts (/μL)
|
1 (0, 520)
|
CSF OCB positive (%)
|
8/29 (27.59%)
|
CSF cytology (
n
=29)
|
|
White blood cell counts (/0.5 mL)
|
300 (10, 30 000)
|
LYM%
|
60 (0, 95)
|
NEU%
|
5 (0, 60)
|
MONO%
|
0 (0, 80)
|
Thyroid function (
n
=19)
|
|
FT3 (pg/mL)
|
2.66 (2.21, 3.32)
|
FT4 (ng/dl)
|
1.01 (0.82, 1.59)
|
TSH (mIU/L)
|
1.11 (0.234, 4.193)
|
Autoimmune antibodies (
n
=27)
|
|
Negative (%)
|
24/27 (88.89%)
|
ANCA (
n
=19)
|
|
CANCA-Pr3 (U/mL)
|
1.4 (1.1, 2.3)
|
PANCA-Mpo (U/mL)
|
1.2 (0.9, 8.1)
|
MOG antibody titers in serum (
n
=36)
|
|
≥1:100 (%)
|
17/36 (47.22%)
|
MOG antibody positive in CSF (
n
=25)
|
5/25 (20%)
|
Other antibody in serum (
n
=36)
|
|
AQP4 (%)
|
4/36 (11.11%)
|
NMDAR (%)
|
1/36 (2.78%)
|
Other antibody in CSF (
n
=25)
|
|
GFAP (%)
|
2/25 (8%)
|
NMDAR (%)
|
1/25 (4%)
|
入组的36例患者的血清中均被检测出MOG-IgG抗体,其中高滴度(≥1∶100)的MOG-IgG占47.22%。在25例患者脑脊液样本中,有5例检测到MOG-IgG阳性。此外,患者还合并其他自身抗体,其中4例患者血清合并抗AQP4抗体,1例患者血清中合并抗NMDAR抗体,1例脑脊液中检测到抗GFAP抗体,以及1例患者脑脊液中同时检测到抗NMDAR和抗GFAP抗体。值得一提的是其中一名患者的血清和脑脊液中均检测到MOG和NMDAR抗体(MOG-IgG滴度1∶100,NMDAR抗体滴度1∶320)。该患者以头痛、头晕、精神和行为异常以及癫痫等症状作为主要临床表现。MRI显示左侧颞枕皮质轻度肿胀。经过激素治疗、静脉丙球治疗和免疫抑制剂治疗后,患者的症状略有改善,偶有癫痫发作。该患者的诊断为MOGAD与抗NMDA受体脑炎重叠综合征。
影像检查方面,1例患者缺乏影像数据,2例患者影像无明显异常,其余患者均提示异常MRI表现(
~
)。影像学主要表现为T2加权和FLAIR序列异常信号,病变边界不清;最常见病变部位为脑室周围白质(45.71%),其次是脊髓(22.86%)和皮层/皮质下区域(20%)。病变部位的结果总结(
),典型的影像病(
~
)。由于脑脊液寡克隆带阳性结果常提示MS可能,我们重点分析了阳性患者的MRI特点。然而,只有1例患者表现出典型的MS影像学表现(
)。
表 3
MRI表现及病变部位
MRI findings and distribution of the lesions
Characteristic
|
Value
|
Lesion sites (
n
=35)
|
|
Normal (%)
|
2/35(5.71%)
|
Cortical/subcortical (%)
|
7/35 (20%)
|
Deep white matter l (%)
|
1/35(2.86%)
|
Periventricular white matter (%)
|
16/35(45.71%)
|
Corpus callosum (%)
|
2/35(5.71%)
|
Basal ganglia (%)
|
4/35 (11.43%)
|
Thalamus (%)
|
2/35(5.71%)
|
Brainstem (%)
|
2/35(5.71%)
|
Cerebellum (%)
|
3/35(8.57%)
|
Spinal (%)
|
8/35 (22.86%)
|
Peripheral nerves (%)
|
2/35(5.71%)
|
2.3. 治疗和预后
对患者的治疗方案进行分析,结果提示83.33%的患者接受了免疫治疗,包括静脉激素冲击治疗、静脉免疫球蛋白治疗(IVIG)和血浆置换治疗,且IVIG及血浆置换治疗均是在静脉激素冲击治疗基础上进行的。大多数患者在出院时预后良好,占比66.67%。在6个月随访时,预后良好的患者比例增加到72.73%。
2.4. 高、低滴度患者临床资料对比分析
以1∶100为界,将患者分为低滴度组(
n
=19)和高滴度组(
n
=17)进行比较。两组在一般人口学特征、入院时白细胞计数、中性粒细胞计数、C-反应蛋白、红细胞沉降率、脑脊液白细胞计数和蛋白水平等方面均没有显著差异。然而,高滴度组淋巴细胞计数显著降低(
P
=0.025),中性粒细胞与淋巴细胞比值(NLR)显著升高(
P
=0.045),血清游离甲状腺素(FT4)水平显著升高(
P
=0.033),脑脊液葡萄糖水平显著升高(
P
=0.007)。在治疗方面,高滴度组患者更倾向于联合IVIG或者血浆置换强化治疗(
P
=0.050)。此外,两组患者在MRI病变部位及预后方面没有显著差异(
)。两组患者在被明确诊断为MOGAD患者的比例、AQP4-IgG的血清阳性率或其他红旗征象(如脑室周围病变和脑脊液寡克隆带阳性)方面也没有显著差异。
表 4
高低滴度组患者临床特点比较
Comparisons of clinical features between patients with low and high titers of MOG-IgG
Characteristic
|
|
< 1:100 (
n
=19)
|
≥1:100 (
n
=17)
|
|
*
P
< 0.05 (Chi-square test).
|
Age≤40 years (%)
|
|
9/19 (47.38%)
|
7/17 (41.18%)
|
0.999
|
Gender (male/female)
|
|
9/10
|
8/9
|
0.999
|
Acute/subacute onset (%)
|
|
7/12
|
7/10
|
0.743
|
MOGAD (%)
|
|
15/19 (78.9%)
|
13/17 (70.59%)
|
0.706
|
Laboratory results (Median, range)
|
|
|
|
|
WBC (×10
9
)
|
|
7.03 (4.39, 17.56)
|
9.80 (4.24, 19.48)
|
0.397
|
LYM (×10
9
)
|
|
2.07 (0.97, 4.38)
|
1.695 (0.72, 3.85)
|
0.025
|
NEU (×10
9
)
|
|
4.18 (2.02, 10.78)
|
4.61 (1.41, 17.59)
|
0.196
|
NLR
|
|
1.98 (1.03, 8.62)
|
2.660 (1.12, 22.78)
|
0.045*
|
CRP (mg/L)
|
|
1.22 (0.00, 18.88)
|
0.840 (0.20, 59.84)
|
0.447
|
ESR (mm/1 h)
|
|
8 (2, 15)
|
10 (2, 68)
|
0.158
|
CSF results
|
|
|
|
|
Protein (g/L)
|
|
0.38 (0.21, 0.60)
|
0.410 (0.19, 3.99)
|
0.557
|
Chloride (mmol/L)
|
|
126.5 (118.1, 130.6)
|
127.2 (119.3, 131.7)
|
0.595
|
Glucose (mmol/L)
|
|
3.29 (2.51, 3.93)
|
3.60 (2.92, 4.40)
|
0.007*
|
White blood cell counts (/μL)
|
|
0 (0, 296)
|
1.5 (0, 520)
|
0.383
|
CSF OCB positive (%)
|
|
3/12 (25%)
|
5/17 (29.41%)
|
0.999
|
Thyroid function
|
|
|
|
|
FT3 (pg/mL)
|
|
2.59 (2.21, 3.32)
|
2.68 (0.97, 3.26)
|
0.619
|
FT4 (ng/dl)
|
|
0.96 (0.82, 1.13)
|
1.13 (0.82, 1.59)
|
0.033*
|
TSH (mIU/L)
|
|
1.11 (0.70, 1.75)
|
0.96 (0.23, 4.19)
|
0.661
|
Lesion sites
|
|
|
|
|
Supratentorium/subtentorium/spinal cord
|
|
11/4/2
|
10/7/5
|
0.464
|
Periventricular white matter/others
|
|
9/10
|
7/9
|
0.999
|
Therapy
|
|
|
|
|
Immunotherapy (%)
|
|
15/19 (75%)
|
14/17 (88.24%)
|
0.999
|
IVIG+plasma exchange/pulse steroid therapy
|
2/13
|
7/7
|
0.050
|
|
Prognosis
|
|
|
|
|
mRS at discharge, 0-2/3-6
|
|
14/5
|
10/7
|
0.483
|
mRS during follow-up, 0-2/3-6
|
|
12/4 (
n
=16)
|
12/5
|
0.999
|
3. 讨论
与既往研究不同的是,本研究提示血清中低滴度和高滴度的MOG-IgG在MOGAD的确诊中具有类似的价值。本研究纳入了36例血清MOG-IgG抗体阳性的患者,其中28例患者可以通过临床表现及影像学证据被诊断为MOGAD,低滴度组和高滴度组之间的分布相似。之前的研究已报道低滴度的MOG-IgG具有较低的鉴别能力,在多发性硬化以及其他神经系统疾病中均有检出的报道,因此在诊断时需要谨慎考虑低滴度结果
[
13
]
。
从大型多中心研究中发现,MOGAD的临床特征可总结为包括ADEM、视神经炎、脊髓炎以及脑膜脑炎和脑干脑炎等多种类型,其中成年人最常见的临床表型为视神经炎
[
5
-
7
]
。在我们的研究中,MOGAD患者的临床表现主要涉及脑炎,视神经炎发生的频率较低,这可能与研究中的患者主要来自神经科有关,而具有更典型视神经炎表现的患者更有可能在眼科接受治疗。我们建议对于视神经炎的患者,要加强MOG-IgG抗体筛查。
AQP4-IgG相关的NMOSD是MOGAD的常见鉴别诊断之一,这两种疾病在临床表现、影像特征和治疗方法上非常相似,诊断也主要基于抗体检测
[
15
]
。以往研究指出,双阳性情况较为罕见,而且当出现双阳性时,AQP4-IgG滴度通常较高
[
16
]
。然而,在我们的研究中,4例患者中有3例的MOG-IgG和AQP4-IgG的滴度相似,范围从1∶30到1∶300。仅根据患者现有的临床资料,无法明确患者的临床表现是由单一或者共同抗体所致。尽管依据目前的国内外研究观点,普遍认为AQP4-IgG致病作用更强。这引发了一个问题,是否同时存在AQP4-IgG和MOG-IgG共同致病的情况相关,而此类患者是否应该诊断考虑为两种抗体重叠致病。在自身免疫性疾病中,多种抗体重叠致病的现象已有明确报道,例如MOGAD或NMOSD与抗NMDA受体脑炎重叠
[
17
]
,NMOSD与干燥综合征、系统性红斑狼疮或系统性硬化症重叠
[
18
-
20
]
。MOG与AQP4抗体间的重叠需要进一步思考与印证。
多发性硬化症是MOGAD的另一常见鉴别诊断。脑脊液中的寡克隆带和脑室周围病变在MS患者中更为常见
[
21
]
。虽然我们研究中的35例患者中有16例出现脑室周围病变,29例患者中有8例脑脊液中寡克隆带阳性,但只有1例患者符合典型的MS表现。因此,我们认为寡克隆带和脑室周病变并不能作为区分MS与MOGAD的标志,在鉴别MOGAD和MS时应结合更多临床信息慎重考虑这些标志。
我们在低滴度组和高滴度组之间发现了几项显著的实验室检测差异。高滴度患者表现出更高的NLR、更高的FT4水平和更高的脑脊液葡萄糖水平。NLR已被认为是自身免疫性脑炎严重程度的独立风险因素
[
22
-
24
]
。升高的FT4水平是应激的指标
[
25
]
。一些研究已经表明自身免疫性脑炎患者的葡萄糖水平正常
[
26
]
,因此高滴度患者葡萄糖水平升高的意义尚不清楚。我们推测,高滴度组中升高的NLR和FT4水平可能表明高滴度患者可能具有更强的炎性反应和应激反应。
综上,本研究对于MOGAD的诊断提供了一些参考,特别是对低滴度和高滴度的血清MOG-IgG抗体阳性结果提出了新的解释。我们认为明确诊断需要综合评估临床具体情况,考虑各种诊断指标,而不能仅仅依靠抗体滴度。
本研究强调了血清中低滴度和高滴度的MOG-IgG抗体阳性结果在MOGAD的诊断中的重要性,低滴度结果不应忽视,需要谨慎考虑。AQP4-IgG和MOGIgG抗体在NMOSD病例中的共存对诊断提出了挑战,对于诊断概念的明确有待进一步的研究。实验室检测结果显示低滴度组和高滴度组之间存在显著差异,可能与疾病严重程度和应激水平有关。
Funding Statement
南方医科大学南方医院院长基金(2019B007);国家自然科学基金(82201505);南方医科大学南方医院临床研究专项(2021CR020)
Funding Statement
Supported by National Natural Science Foundation of China (82201505)
References
1.
Sechi, Cacciaguerra L, Chen JJ, et al. Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD): a review of clinical and MRI features, diagnosis, and management.
Front Neurol.
2022;
13
:885218. doi: 10.3389/fneur.2022.885218.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Lebar R, Lubetzki C, Vincent C, et al. The M2 autoantigen of central nervous system myelin, a glycoprotein present in oligodendrocyte membrane.
Clin Exp Immunol.
1986;
66
(2):423–34.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
3.
Mader S, Gredler V, Schanda K, et al. Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders.
J Neuroinflammation.
2011;
8
:184. doi: 10.1186/1742-2094-8-184.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Gospe SM Ⅲ, Chen JJ, Bhatti MT. Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment.
Eye.
2021;
35
(3):753–68. doi: 10.1038/s41433-020-01334-8.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Fadda G, Armangue T, Hacohen Y, et al. Paediatric multiple sclerosis and antibody-associated demyelination: clinical, imaging, and biological considerations for diagnosis and care.
Lancet Neurol.
2021;
20
(2):136–49. doi: 10.1016/S1474-4422(20)30432-4.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligo-dendrocyte glycoprotein antibody-associated disease.
Lancet Neurol.
2021;
20
(9):762–72. doi: 10.1016/S1474-4422(21)00218-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease.
Nat Rev Neurol.
2019;
15
(2):89–102. doi: 10.1038/s41582-018-0112-x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Dubey D, Pittock SJ, Krecke KN, et al. Clinical, radiologic, and prognostic features of myelitis associated with myelin oligodendrocyte glycoprotein autoantibody.
JAMA Neurol.
2019;
76
(3):301–9. doi: 10.1001/jamaneurol.2018.4053.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Jurynczyk M, Geraldes R, Probert F, et al. Distinct brain imaging characteristics of autoantibody-mediated CNS conditions and multiple sclerosis.
Brain.
2017;
140
(3):617–27. doi: 10.1093/brain/aww350.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Chun BY, Cestari DM. Myelin oligodendrocyte glycoprotein-IgG-associated optic neuritis.
Curr Opin Ophthalmol.
2018;
29
(6):508–13. doi: 10.1097/ICU.0000000000000520.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Pace S, Orrell M, Woodhall M, et al. Frequency of MOG-IgG in cerebrospinal fluid versus serum.
J Neurol Neurosurg Psychiatry.
2022;
93
(3):334–5. doi: 10.1136/jnnp-2021-326779.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
Held F, Kalluri SR, Berthele A, et al. Frequency of myelin oligodendrocyte glycoprotein antibodies in a large cohort of neurological patients.
Mult Scler J Exp Transl Clin.
2021;
7
(2):20552173211022767.
[
PMC free article
]
[
PubMed
]
[
Google Scholar
]
13.
Sechi, Buciuc M, Pittock SJ, et al. Positive predictive value of myelin oligodendrocyte glycoprotein autoantibody testing.
JAMA Neurol.
2021;
78
(6):741–6. doi: 10.1001/jamaneurol.2021.0912.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
14.
Xu KB, Wang DM, He Y, et al. Identification of anti-collapsin response mediator protein 2 antibodies in patients with encephalitis or encephalomyelitis.
Front Immunol.
2022;
13
:854445. doi: 10.3389/fimmu.2022.854445.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Hamid SHM, Whittam D, Saviour M, et al. Seizures and encephalitis in myelin oligodendrocyte glycoprotein IgG disease
vs
aquaporin 4 IgG disease.
JAMA Neurol.
2018;
75
(1):65–71. doi: 10.1001/jamaneurol.2017.3196.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Banwell B, Bennett JL, Marignier R, et al. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: international MOGAD Panel proposed criteria.
Lancet Neurol.
2023;
22
(3):268–82. doi: 10.1016/S1474-4422(22)00431-8.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Fan SY, Xu Y, Ren HT, et al. Comparison of myelin oligodendrocyte glycoprotein (MOG)-antibody disease and AQP4-IgG-positive neuromyelitis optica spectrum disorder (NMOSD) when they co-exist with anti-NMDA (N-methyl-D-aspartate) receptor encephalitis.
Mult Scler Relat Disord.
2018;
20
:144–52. doi: 10.1016/j.msard.2018.01.007.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Alharbi S, Ahmad Z, Bookman AA, et al. Epidemiology and survival of systemic sclerosis-systemic lupus erythematosus overlap syndrome.
J Rheumatol.
2018;
45
(10):1406–10. doi: 10.3899/jrheum.170953.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
Liu LQ, Tang L, Zhang L, et al. The first case report of preschool-onset SS/SLE coexisting with NMOSD of Chinese origin.
Front Immunol.
2022;
13
:887041. doi: 10.3389/fimmu.2022.887041.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis.
Curr Opin Neurol.
2015;
28
(3):193–205. doi: 10.1097/WCO.0000000000000206.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Liu ZW, Li YM, Wang YY, et al. The neutrophil-to-lymphocyte and monocyte-to-lymphocyte ratios are independently associated with the severity of autoimmune encephalitis.
Front Immunol.
2022;
13
:911779. doi: 10.3389/fimmu.2022.911779.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Zeng ZL, Wang CJ, Wang BJ, et al. Prediction of neutrophil-to-lymphocyte ratio in the diagnosis and progression of autoimmune encephalitis.
Neurosci Lett.
2019;
694
:129–35. doi: 10.1016/j.neulet.2018.12.003.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
Wang BJ, Wang CJ, Feng JL, et al. Clinical features, treatment, and prognostic factors in neuronal surface antibody-mediated severe autoimmune encephalitis.
Front Immunol.
2022;
13
:890656. doi: 10.3389/fimmu.2022.890656.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
Shivhare A, Jain A, Sharma JP, et al. Intravascular volume status and stress markers in patients observing long and short duration of fasting: a prospective single blinded observational study.
J Clin Anesth.
2023;
86
:110992. doi: 10.1016/j.jclinane.2022.110992.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
Hoang H, Robinson-Papp J, Mu L, et al. Determining an infectious or autoimmune etiology in encephalitis.
Ann Clin Transl Neurol.
2022;
9
(8):1125–35. doi: 10.1002/acn3.51608.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]