添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
自信的凳子  ·  The echo Command·  3 月前    · 
知识渊博的警车  ·  powerbi - How to ...·  1 年前    · 

摘要: 信号分子一氧化氮(Nitric oxide,NO)参与植物的许多生理反应过程,例如:萌发、气孔的关闭、侧根的发育以及生物与非生物的胁迫反应过程等,主要的调控形式是与半胱氨酸上的硫基发生可逆的S-亚硝基化作用。NO的半衰期很短,这限制了它在细胞中的生理功能,与胞内含硫基的分子形成的S-亚硝基硫醇(S-nitrosothiols,SNOs)的化学性质稳定,在植物的生长发育及抗逆过程中SNOs参与NO的运输、扩散、储存以及蛋白的翻译后修饰过程。谷胱甘肽(Glutathione,GSH)与NO发生S-亚硝基化作用形成S-亚硝基谷胱甘肽(S-nitrosoglutathione,GSNO),GSNO作为NO的储存与转运形式,可以把NO转到靶蛋白上,使靶蛋白发生亚硝基化。亚硝基谷胱甘肽还原酶(S-Nitrosoglutathione reductase,GSNOR)是生物体中的一类保守蛋白,通过还原亚硝基谷胱甘肽从而调节细胞内NO及亚硝基硫醇(S-nitrosothiols,SNOs)水平,保护机体免受亚硝化的胁迫,间接的调控的细胞的氧化状态。GSNO是一个天然的NO储存库,GSNOR是调节机体亚硝基化水平的关键基因。主要对GSNOR参与的植物生长发育、生物与非生物胁迫等过程进行了概述,探讨GSNOR在植物生长发育及胁迫反应中的作用机制,将有助于我们对NO生理功能的了解,旨在为将来GSNOR的研究提供理论参考和思路。

Abstract: Nitric oxide(NO)as a signaling molecule is involved in diverse physiological processes such as germination,stomata closing,lateral root development and biotic and abiotic stress response. The predominant regulating way of NO action is S-nitrosylation,the reversible covalent attachment of NO to cysteine thiols. As a free radical,NO’s half-life is very short,which restricts their physiological function in cells;while the S-nitrosothiols(SNOs)from the interaction of NO with intracellular sulfhydryl-containing molecules are generally more stable in solution,and it participates in the transport,diffusion,and storage of NO,as well as the post-translational modifications of proteins. S-nitrosoglutathione(GSNO)from s-nitrosation with NO is the storage and transport form of NO,which can transfer its NO moiety to proteins and enable target protein to be in nitrosylation. As a type of conserved protein,S-nitrosoglutathione reductase(GSNOR)regulates the level of intracellular NO and nitroso mercaptan(SNOs)by reducing GSNO,thus which may protect the body from nitrosation stress and indirectly regulate the oxidative state cell. GSNO is a natural NO repository and GSNOR is the key gene that regulates the level of nitrosylation. This paper mainly summarizes the processes of plant growth and development,biological and abiotic stress involved in GSNOR. Exploring the mechanism of GSNOR in plant growth and stress response will help us to understand the physiological function of NO,aiming at providing a theoretical reference and thought for future GSNOR research.

Key words: plant, S-nitrosoglutathione, S-nitrosoglutathione reductase, nitric oxide [1] Benhar M, Forrester MT, Stamler JS.Nitrosative stress in the ER:A new role for S-nitrosylation in neurodegenerative diseases[J]. ACS Chem Biol, 2006, 1(6):355-358.
[2] Stamler JS, Lamas S, Fang FC.Nitrosylation the prototypic redoxbased signaling mechanism[J]. Cell, 2001, 6:675-683.
[3] Jensen DE, Belka GK, Du Bois GC.S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme[J]. Biochem J, 1998, 331(2):659-568.
[4] Liu L, Hausladen A, Zeng M, et al.A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans[J]. Nature, 2001, 410(6827):490-494.
[5] Corpas FJ, Barroso JB, Palma JM, et al.Plant peroxisomes:a nitro-oxidative cocktail[J]. Redox Biol, 2017, 11:535-542.
[6] Sakamoto A, Ueda M, Morikawa H.Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase[J]. FEBS Letters, 2002, 515(1-3):20-24.
[7] Winter D, Vinegar B, Nahal H, et al.An“Electronic Fluorescent Pictograph”browser for exploring and analyzing large-scale biological data sets[J]. PLoS One, 2007, 2(8):718.
[8] Chen R, Sun S, Wang C, et al.The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death[J]. Cell Res, 2009, 12:1377-1387.
[9] Cheng T, Chen J, Ef AA, et al.Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase(GSNOR)and nitric oxide signaling enhance poplar defense against chilling stress[J]. Planta, 2015, 242(6):1361-1390.
[10] Gong B, Wen D, Wang X, et al.S-nitrosoglutathione reductase-modulated redox signaling controls sodic alkaline stress responses in Solanum lycopersicum L.[J]. Plant Cell Physiol, 2015, 56(4):790-802.
[11] Xu S, Guerra D, Lee U, et al.S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis[J]. Front Plant Sci, 2013, 5(4):430.
[12] Reumann S, Babujee L, Ma C, et al.Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways and defense mechanisms[J]. Plant Cell, 2007, 19(10):3170-3193.
[13] Tichá T, Činčalová L, Kopečný D, et al.Characterization of S-nitrosoglutathione reductase from Brassica and Lactuca spp. and its modulation during plant development[J]. Nitric Oxide, 2017, 68(1):68-76.
[14] Chaki M, Valderrama R, et al.Mechanical wounding induces a nitrosative stress by down-regulation of GSNO reductase and an increase in S-nitrosothiols in sunflower(Helianthus annuus)seedlings[J]. J Exp Bot, 2011, 62(6):1803-1813.
[15] Barroso JB, Valderrama R, Corpas FJ.Immunolocalization of S-nitrosoglutathione, S-nitrosoglutathione reductase and tyrosine nitration in pea leaf organelles[J]. Acta Physiol Plant, 2013, 35(8):2635-2640.
[16] Feechan A, Kwon E, Yun BW, et al.A central role for S-nitrosothiols in plant disease resistance[J]. Proc Natl Acad Sci USA, 2005, 102(22):8054-8059.
[17] Rustérucci C, Espunya MC, et al.S-nitrosoglutathione reductase affords protection against pathogens in Arabidopsis, both locally and systemically[J]. Plant Physiol, 2007, 3:1282-1292.
[18] Chaki M, Fernández-Ocaña AM, et al.Involvement of reactive nitrogen and oxygen species(RNS and ROS)in sunflower-mildewinteraction[J]. Plant Cell Physiol, 2009, 50(2):265-279.
[19] Tichá T, Sedlářová M, Činčalová L, et al.Involvement of S-nitrosothiols modulation by S-nitrosoglutathione reductase in defence responses of lettuce and wild Lactuca spp. to biotrophic mildews[J]. Planta, 2018, 247(5):1203-1215.
[20] Barroso JB, et al.Localization of S-nitrosoglutathione and expression of S-nitrosoglutathione reductase in pea plants under cadmium stress[J]. J Exp Bot, 2006, 8:1785-1793.
[21] Liu S, Yang R, et al.Signalling cross-talk between nitric oxide and active oxygen in Trifolium repens L. plants responses to cadmium stress[J]. Environ Pollut, 2018, 239:53-68.
[22] Leterrier M, Airaki M, Palma JM, et al.Arsenic triggers the nitric oxide(NO)and S-nitrosoglutathione(GSNO)metabolism in Arabidopsis[J]. Environ Pollut, 2012, 166:136-143.
[23] Lee U, Wie C, Fernandez BO, et al.Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis[J]. Plant Cell, 2008, 3:786-802.
[24] Chaki M, Valderrama R, Fernández-Ocaña AM, et al.High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration[J]. Plant Cell Environ, 2011, 34(11):1803-1818.
[25] Corpas FJ, Alche JD, Barroso JB.Current overview of S-nitrosoglutathione(GSNO)in higher plants[J]. Front Plant Sci, 2013, 5(4):126.
[26] Airaki M, Leterrier M, Mateos RM, et al.Metabolism of reactive oxygen species and reactive nitrogen species in pepper(Capsicum annuum L.)plants under low temperature stress[J]. Plant Cell Environ, 2011, 35(2):281-295.
[27] Díaz M, Achkor H, Titarenko E, et al.The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid[J]. FEBS Lett, 2003, 543(1-3):136-139.
[28] Zhou S, Jia L, Chu H, et al. Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding[J]. PLoS Genet, 2016, 29;12(9):e1006255.
[29] Jain P, von Toerne C, Lindermayr C, et al. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings[J]. Physiol Plant, 2018, 162(1):49-72.
[30] Wang PC, Du YY, Hou YJ, et al.Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1[J]. Proc Natl Acad Sci USA, 2015, 112(2):613-618.
[31] Kovacs I, Holzmeister C, Wirtz M, et al.ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms[J]. Front Plant Sci, 2016, 7:1669.
[32] Hung KT, Chang CH, et al.Paraquat toxicity is reduced by nitric oxide in rice leaves[J]. J Plant Physiol, 2002, 2159-166.
[33] Corpas FJ, Barroso JB.Peroxynitrit(ONOO-)is endogenously produced in Arabidopsis peroxisomes and is overproduced under cadmium stress[J]. Ann Bot, 2014, 113(1):87-96.
[34] Sun C, Liu L, Zhou W, et al.Aluminum induces distinct changes in the metabolism of reactive oxygen and nitrogen species in the roots of two wheat genotypes with different aluminum resistance[J]. J Agric Food Chem, 2017, 65(43):9419-9427.
[35] Yun BW, Feechan A, Yin M, et al.S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478(7368):264-268.
[36] Yang H, Mu J, Chen L, et al.S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses[J]. Plant Physiol, 2015, 167(4):1604-1615.
[37] Begara-Morales JC, Sánchez-Calvo B, Chaki M, et al.Dual regulation of cytosolic ascorbate peroxidase(APX)by tyrosine nitration and S-nitrosylation[J]. J Exp Bot, 2014, 2:527-538.
[38] Begara-Morales JC.GSNOR regulates VND7-mediated xylem vessel cell differentiation[J]. Plant Cell Physiol, 2018, 59(1):5-7.
[39] Ohtani M, Kawabe H, Demura T.Evidence that thiol-based redox state is critical for xylem vessel cell differentiation[J]. Plant Signal Behav, 2018, 13(4):e1428512. 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展 [J]. 生物技术通报, 2023, 39(8): 106-113. 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展 [J]. 生物技术通报, 2023, 39(8): 114-125. 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析 [J]. 生物技术通报, 2023, 39(8): 220-233. 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制 [J]. 生物技术通报, 2023, 39(8): 80-90. 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展 [J]. 生物技术通报, 2023, 39(7): 113-122. 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用 [J]. 生物技术通报, 2023, 39(7): 48-55. 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望 [J]. 生物技术通报, 2023, 39(6): 12-30. 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析 [J]. 生物技术通报, 2023, 39(6): 259-273. 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展 [J]. 生物技术通报, 2023, 39(6): 61-72. 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展 [J]. 生物技术通报, 2023, 39(5): 14-22. 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究 [J]. 生物技术通报, 2023, 39(5): 286-296. 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法 [J]. 生物技术通报, 2023, 39(4): 212-220. 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用 [J]. 生物技术通报, 2023, 39(3): 52-58. 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展 [J]. 生物技术通报, 2023, 39(3): 59-68. 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展 [J]. 生物技术通报, 2023, 39(2): 1-9.