添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • Chroma.aget_by_ids()
  • Chroma.amax_marginal_relevance_search()
  • Chroma.amax_marginal_relevance_search_by_vector()
  • Chroma.as_retriever()
  • Chroma.asearch()
  • Chroma.asimilarity_search()
  • Chroma.asimilarity_search_by_vector()
  • Chroma.asimilarity_search_with_relevance_scores()
  • Chroma.asimilarity_search_with_score()
  • Chroma.delete()
  • Chroma.delete_collection()
  • Chroma.encode_image()
  • Chroma.from_documents()
  • Chroma.from_texts()
  • Chroma.get()
  • Chroma.get_by_ids()
  • Chroma.max_marginal_relevance_search()
  • Chroma.max_marginal_relevance_search_by_vector()
  • Chroma.persist()
  • Chroma.search()
  • Chroma.similarity_search()
  • Chroma.similarity_search_by_image()
  • Chroma.similarity_search_by_image_with_relevance_score()
  • Chroma.similarity_search_by_vector()
  • Chroma.similarity_search_by_vector_with_relevance_scores()
  • Chroma.similarity_search_with_relevance_scores()
  • Chroma.similarity_search_with_score()
  • Chroma.update_document()
  • Chroma.update_documents()
  • class langchain_community.vectorstores.chroma. Chroma ( collection_name : str = 'langchain' , embedding_function : Optional [ Embeddings ] = None , persist_directory : Optional [ str ] = None , client_settings : Optional [ chromadb.config.Settings ] = None , collection_metadata : Optional [ Dict ] = None , client : Optional [ chromadb.Client ] = None , relevance_score_fn : Optional [ Callable [ [ float ] , float ] ] = None ) [source]

    Deprecated since version 0.2.9: Use langchain_chroma.Chroma instead.

    ChromaDB vector store.

    To use, you should have the chromadb python package installed.

    Example

    from langchain_community.vectorstores import Chroma
    from langchain_community.embeddings.openai import OpenAIEmbeddings
    embeddings = OpenAIEmbeddings()
    vectorstore = Chroma("langchain_store", embeddings)
    

    Initialize with a Chroma client.

    Attributes

    aadd_documents(documents, **kwargs)

    Async run more documents through the embeddings and add to the vectorstore.

    aadd_texts(texts[, metadatas])

    Async run more texts through the embeddings and add to the vectorstore.

    add_documents(documents, **kwargs)

    Add or update documents in the vectorstore.

    add_images(uris[, metadatas, ids])

    Run more images through the embeddings and add to the vectorstore.

    add_texts(texts[, metadatas, ids])

    Run more texts through the embeddings and add to the vectorstore.

    adelete([ids])

    Async delete by vector ID or other criteria.

    afrom_documents(documents, embedding, **kwargs)

    Async return VectorStore initialized from documents and embeddings.

    afrom_texts(texts, embedding[, metadatas])

    Async return VectorStore initialized from texts and embeddings.

    aget_by_ids(ids, /)

    Async get documents by their IDs.

    amax_marginal_relevance_search(query[, k, ...])

    Async return docs selected using the maximal marginal relevance.

    amax_marginal_relevance_search_by_vector(...)

    Async return docs selected using the maximal marginal relevance.

    as_retriever(**kwargs)

    Return VectorStoreRetriever initialized from this VectorStore.

    asearch(query, search_type, **kwargs)

    Async return docs most similar to query using a specified search type.

    asimilarity_search(query[, k])

    Async return docs most similar to query.

    asimilarity_search_by_vector(embedding[, k])

    Async return docs most similar to embedding vector.

    asimilarity_search_with_relevance_scores(query)

    Async return docs and relevance scores in the range [0, 1].

    asimilarity_search_with_score(*args, **kwargs)

    Async run similarity search with distance.

    delete([ids])

    Delete by vector IDs.

    delete_collection()

    Delete the collection.

    encode_image(uri)

    Get base64 string from image URI.

    from_documents(documents[, embedding, ids, ...])

    Create a Chroma vectorstore from a list of documents.

    from_texts(texts[, embedding, metadatas, ...])

    Create a Chroma vectorstore from a raw documents.

    get([ids, where, limit, offset, ...])

    Gets the collection.

    get_by_ids(ids, /)

    Get documents by their IDs.

    max_marginal_relevance_search(query[, k, ...])

    Return docs selected using the maximal marginal relevance.

    max_marginal_relevance_search_by_vector(...)

    Return docs selected using the maximal marginal relevance.

    persist()

    Deprecated since version langchain-community==0.1.17: Since Chroma 0.4.x the manual persistence method is no longer supported as docs are automatically persisted.

    search(query, search_type, **kwargs)

    Return docs most similar to query using a specified search type.

    similarity_search(query[, k, filter])

    Run similarity search with Chroma.

    similarity_search_by_image(uri[, k, filter])

    Search for similar images based on the given image URI.

    similarity_search_by_image_with_relevance_score(uri)

    Search for similar images based on the given image URI.

    similarity_search_by_vector(embedding[, k, ...])

    Return docs most similar to embedding vector.

    similarity_search_by_vector_with_relevance_scores(...)

    Return docs most similar to embedding vector and similarity score.

    similarity_search_with_relevance_scores(query)

    Return docs and relevance scores in the range [0, 1].

    similarity_search_with_score(query[, k, ...])

    Run similarity search with Chroma with distance.

    update_document(document_id, document)

    Update a document in the collection.

    update_documents(ids, documents)

    Update a document in the collection.

  • collection_name (str) –

  • embedding_function (Optional[Embeddings]) –

  • persist_directory (Optional[str]) –

  • client_settings (Optional[chromadb.config.Settings]) –

  • collection_metadata (Optional[Dict]) –

  • client (Optional[chromadb.Client]) –

  • relevance_score_fn (Optional[Callable[[float], float]]) –

  • __init__(collection_name: str = 'langchain', embedding_function: Optional[Embeddings] = None, persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, collection_metadata: Optional[Dict] = None, client: Optional[chromadb.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None) None[source]

    Initialize with a Chroma client.

    Parameters
  • collection_name (str) –

  • embedding_function (Optional[Embeddings]) –

  • persist_directory (Optional[str]) –

  • client_settings (Optional[chromadb.config.Settings]) –

  • collection_metadata (Optional[Dict]) –

  • client (Optional[chromadb.Client]) –

  • relevance_score_fn (Optional[Callable[[float], float]]) –

  • Return type
    async aadd_documents(documents: List[Document], **kwargs: Any) List[str]

    Async run more documents through the embeddings and add to the vectorstore.

    Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments.

  • Returns

    List of IDs of the added texts.

    Raises

    ValueError – If the number of IDs does not match the number of documents.

    Return type

    List[str]

    async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) List[str]

    Async run more texts through the embeddings and add to the vectorstore.

    Parameters
  • texts (Iterable[str]) – Iterable of strings to add to the vectorstore.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • **kwargs (Any) – vectorstore specific parameters.

  • Returns

    List of ids from adding the texts into the vectorstore.

    Raises
  • ValueError – If the number of metadatas does not match the number of texts.

  • ValueError – If the number of ids does not match the number of texts.

  • Return type

    List[str]

    add_documents(documents: List[Document], **kwargs: Any) List[str]

    Add or update documents in the vectorstore.

    Parameters
  • documents (List[Document]) – Documents to add to the vectorstore.

  • kwargs (Any) – Additional keyword arguments. if kwargs contains ids and documents contain ids, the ids in the kwargs will receive precedence.

  • Returns

    List of IDs of the added texts.

    Raises

    ValueError – If the number of ids does not match the number of documents.

    Return type

    List[str]

    add_images(uris: List[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str][source]

    Run more images through the embeddings and add to the vectorstore.

    Parameters
  • List[str] (uris) – File path to the image.

  • metadatas (Optional[List[dict]], optional) – Optional list of metadatas.

  • ids (Optional[List[str]], optional) – Optional list of IDs.

  • uris (List[str]) –

  • kwargs (Any) –

  • Returns

    List of IDs of the added images.

    Return type

    List[str]

    add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) List[str][source]

    Run more texts through the embeddings and add to the vectorstore.

    Parameters
  • texts (Iterable[str]) – Texts to add to the vectorstore.

  • metadatas (Optional[List[dict]], optional) – Optional list of metadatas.

  • ids (Optional[List[str]], optional) – Optional list of IDs.

  • kwargs (Any) –

  • Returns

    List of IDs of the added texts.

    Return type

    List[str]

    async adelete(ids: Optional[List[str]] = None, **kwargs: Any) Optional[bool]

    Async delete by vector ID or other criteria.

    Parameters
  • ids (Optional[List[str]]) – List of ids to delete. If None, delete all. Default is None.

  • **kwargs (Any) – Other keyword arguments that subclasses might use.

  • Returns

    True if deletion is successful, False otherwise, None if not implemented.

    Return type

    Optional[bool]

    async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) VST

    Async return VectorStore initialized from documents and embeddings.

    Parameters
  • documents (List[Document]) – List of Documents to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • kwargs (Any) – Additional keyword arguments.

  • Returns

    VectorStore initialized from documents and embeddings.

    Return type

    VectorStore

    async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) VST

    Async return VectorStore initialized from texts and embeddings.

    Parameters
  • texts (List[str]) – Texts to add to the vectorstore.

  • embedding (Embeddings) – Embedding function to use.

  • metadatas (Optional[List[dict]]) – Optional list of metadatas associated with the texts. Default is None.

  • kwargs (Any) – Additional keyword arguments.

  • Returns

    VectorStore initialized from texts and embeddings.

    Return type

    VectorStore

    async aget_by_ids(ids: Sequence[str], /) List[Document]

    Async get documents by their IDs.

    The returned documents are expected to have the ID field set to the ID of the document in the vector store.

    Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

    Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

    This method should NOT raise exceptions if no documents are found for some IDs.

    Parameters

    ids (Sequence[str]) – List of ids to retrieve.

    Returns

    List of Documents.

    Return type

    List[Document]

    New in version 0.2.11.

    async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

    Async return docs selected using the maximal marginal relevance.

    Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

    Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • kwargs (Any) –

  • Returns

    List of Documents selected by maximal marginal relevance.

    Return type

    List[Document]

    async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) List[Document]

    Async return docs selected using the maximal marginal relevance.

    Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

    Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm. Default is 20.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Documents selected by maximal marginal relevance.

    Return type

    List[Document]

    as_retriever(**kwargs: Any) VectorStoreRetriever

    Return VectorStoreRetriever initialized from this VectorStore.

    Parameters

    **kwargs (Any) –

    Keyword arguments to pass to the search function. Can include: search_type (Optional[str]): Defines the type of search that

    the Retriever should perform. Can be “similarity” (default), “mmr”, or “similarity_score_threshold”.

    search_kwargs (Optional[Dict]): Keyword arguments to pass to the
    search function. Can include things like:

    k: Amount of documents to return (Default: 4) score_threshold: Minimum relevance threshold

    for similarity_score_threshold

    fetch_k: Amount of documents to pass to MMR algorithm

    (Default: 20)

    lambda_mult: Diversity of results returned by MMR;

    1 for minimum diversity and 0 for maximum. (Default: 0.5)

    filter: Filter by document metadata

    Examples:

    # Retrieve more documents with higher diversity
    # Useful if your dataset has many similar documents
    docsearch.as_retriever(
        search_type="mmr",
        search_kwargs={'k': 6, 'lambda_mult': 0.25}
    # Fetch more documents for the MMR algorithm to consider
    # But only return the top 5
    docsearch.as_retriever(
        search_type="mmr",
        search_kwargs={'k': 5, 'fetch_k': 50}
    # Only retrieve documents that have a relevance score
    # Above a certain threshold
    docsearch.as_retriever(
        search_type="similarity_score_threshold",
        search_kwargs={'score_threshold': 0.8}
    # Only get the single most similar document from the dataset
    docsearch.as_retriever(search_kwargs={'k': 1})
    # Use a filter to only retrieve documents from a specific paper
    docsearch.as_retriever(
        search_kwargs={'filter': {'paper_title':'GPT-4 Technical Report'}}
    async asearch(query: str, search_type: str, **kwargs: Any)  List[Document]
    

    Async return docs most similar to query using a specified search type.

    Parameters
  • query (str) – Input text.

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Documents most similar to the query.

    Raises

    ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

    Return type

    List[Document]

    async asimilarity_search(query: str, k: int = 4, **kwargs: Any) List[Document]

    Async return docs most similar to query.

    Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Documents most similar to the query.

    Return type

    List[Document]

    async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) List[Document]

    Async return docs most similar to embedding vector.

    Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Documents most similar to the query vector.

    Return type

    List[Document]

    async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

    Async return docs and relevance scores in the range [0, 1].

    0 is dissimilar, 1 is most similar.

    Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs

    async asimilarity_search_with_score(*args: Any, **kwargs: Any) List[Tuple[Document, float]]

    Async run similarity search with distance.

    Parameters
  • *args (Any) – Arguments to pass to the search method.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Tuples of (doc, similarity_score).

    Return type

    List[Tuple[Document, float]]

    delete(ids: Optional[List[str]] = None, **kwargs: Any) None[source]

    Delete by vector IDs.

    Parameters
  • ids (Optional[List[str]]) – List of ids to delete.

  • kwargs (Any) –

  • Return type
    classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any) Chroma[source]

    Create a Chroma vectorstore from a list of documents.

    If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.

    Parameters
  • collection_name (str) – Name of the collection to create.

  • persist_directory (Optional[str]) – Directory to persist the collection.

  • ids (Optional[List[str]]) – List of document IDs. Defaults to None.

  • documents (List[Document]) – List of documents to add to the vectorstore.

  • embedding (Optional[Embeddings]) – Embedding function. Defaults to None.

  • client_settings (Optional[chromadb.config.Settings]) – Chroma client settings

  • collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.

  • client (Optional[chromadb.Client]) –

  • kwargs (Any) –

  • Returns

    Chroma vectorstore.

    Return type

    Chroma

    classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, collection_name: str = 'langchain', persist_directory: Optional[str] = None, client_settings: Optional[chromadb.config.Settings] = None, client: Optional[chromadb.Client] = None, collection_metadata: Optional[Dict] = None, **kwargs: Any) Chroma[source]

    Create a Chroma vectorstore from a raw documents.

    If a persist_directory is specified, the collection will be persisted there. Otherwise, the data will be ephemeral in-memory.

    Parameters
  • texts (List[str]) – List of texts to add to the collection.

  • collection_name (str) – Name of the collection to create.

  • persist_directory (Optional[str]) – Directory to persist the collection.

  • embedding (Optional[Embeddings]) – Embedding function. Defaults to None.

  • metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None.

  • ids (Optional[List[str]]) – List of document IDs. Defaults to None.

  • client_settings (Optional[chromadb.config.Settings]) – Chroma client settings

  • collection_metadata (Optional[Dict]) – Collection configurations. Defaults to None.

  • client (Optional[chromadb.Client]) –

  • kwargs (Any) –

  • Returns

    Chroma vectorstore.

    Return type

    Chroma

    get(ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None) Dict[str, Any][source]

    Gets the collection.

    Parameters
  • ids (Optional[OneOrMany[ID]]) – The ids of the embeddings to get. Optional.

  • where (Optional[Where]) – A Where type dict used to filter results by. E.g. {“color” : “red”, “price”: 4.20}. Optional.

  • limit (Optional[int]) – The number of documents to return. Optional.

  • offset (Optional[int]) – The offset to start returning results from. Useful for paging results with limit. Optional.

  • where_document (Optional[WhereDocument]) – A WhereDocument type dict used to filter by the documents. E.g. {$contains: “hello”}. Optional.

  • include (Optional[List[str]]) – A list of what to include in the results. Can contain “embeddings”, “metadatas”, “documents”. Ids are always included. Defaults to [“metadatas”, “documents”]. Optional.

  • Return type

    Dict[str, Any]

    get_by_ids(ids: Sequence[str], /) List[Document]

    Get documents by their IDs.

    The returned documents are expected to have the ID field set to the ID of the document in the vector store.

    Fewer documents may be returned than requested if some IDs are not found or if there are duplicated IDs.

    Users should not assume that the order of the returned documents matches the order of the input IDs. Instead, users should rely on the ID field of the returned documents.

    This method should NOT raise exceptions if no documents are found for some IDs.

    Parameters

    ids (Sequence[str]) – List of ids to retrieve.

    Returns

    List of Documents.

    Return type

    List[Document]

    New in version 0.2.11.

    max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document][source]

    Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

    Parameters
  • query (str) – Text to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.

  • where_document (Optional[Dict[str, str]]) –

  • kwargs (Any) –

  • Returns

    List of Documents selected by maximal marginal relevance.

    Return type

    List[Document]

    max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document][source]

    Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents.

    Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • fetch_k (int) – Number of Documents to fetch to pass to MMR algorithm.

  • lambda_mult (float) – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.

  • filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.

  • where_document (Optional[Dict[str, str]]) –

  • kwargs (Any) –

  • Returns

    List of Documents selected by maximal marginal relevance.

    Return type

    List[Document]

    persist() None[source]

    Deprecated since version langchain-community==0.1.17: Since Chroma 0.4.x the manual persistence method is no longer supported as docs are automatically persisted.

    Persist the collection.

    This can be used to explicitly persist the data to disk. It will also be called automatically when the object is destroyed.

    Since Chroma 0.4.x the manual persistence method is no longer supported as docs are automatically persisted.

    Return type
    search(query: str, search_type: str, **kwargs: Any) List[Document]

    Return docs most similar to query using a specified search type.

    Parameters
  • query (str) – Input text

  • search_type (str) – Type of search to perform. Can be “similarity”, “mmr”, or “similarity_score_threshold”.

  • **kwargs (Any) – Arguments to pass to the search method.

  • Returns

    List of Documents most similar to the query.

    Raises

    ValueError – If search_type is not one of “similarity”, “mmr”, or “similarity_score_threshold”.

    Return type

    List[Document]

    similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document][source]

    Run similarity search with Chroma.

    Parameters
  • query (str) – Query text to search for.

  • k (int) – Number of results to return. Defaults to 4.

  • filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.

  • kwargs (Any) –

  • Returns

    List of documents most similar to the query text.

    Return type

    List[Document]

    similarity_search_by_image(uri: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document][source]

    Search for similar images based on the given image URI.

    Parameters
  • uri (str) – URI of the image to search for.

  • k (int, optional) – Number of results to return. Defaults to DEFAULT_K.

  • filter (Optional[Dict[str, str]], optional) – Filter by metadata.

  • **kwargs (Any) – Additional arguments to pass to function.

  • Returns

    List of Images most similar to the provided image. Each element in list is a Langchain Document Object. The page content is b64 encoded image, metadata is default or as defined by user.

    Raises

    ValueError – If the embedding function does not support image embeddings.

    Return type

    List[Document]

    similarity_search_by_image_with_relevance_score(uri: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

    Search for similar images based on the given image URI.

    Parameters
  • uri (str) – URI of the image to search for.

  • k (int, optional) – Number of results to return.

  • DEFAULT_K. (Defaults to) –

  • filter (Optional[Dict[str, str]], optional) – Filter by metadata.

  • **kwargs (Any) – Additional arguments to pass to function.

  • Returns

    List of tuples containing documents similar to the query image and their similarity scores. 0th element in each tuple is a Langchain Document Object. The page content is b64 encoded img, metadata is default or defined by user.

    Return type

    List[Tuple[Document, float]]

    Raises

    ValueError – If the embedding function does not support image embeddings.

    similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Document][source]

    Return docs most similar to embedding vector. :param embedding: Embedding to look up documents similar to. :type embedding: List[float] :param k: Number of Documents to return. Defaults to 4. :type k: int :param filter: Filter by metadata. Defaults to None. :type filter: Optional[Dict[str, str]]

    Returns

    List of Documents most similar to the query vector.

    Parameters
  • embedding (List[float]) –

  • k (int) –

  • filter (Optional[Dict[str, str]]) –

  • where_document (Optional[Dict[str, str]]) –

  • kwargs (Any) –

  • Return type

    List[Document]

    similarity_search_by_vector_with_relevance_scores(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

    Return docs most similar to embedding vector and similarity score.

    Parameters
  • embedding (List[float]) – Embedding to look up documents similar to.

  • k (int) – Number of Documents to return. Defaults to 4.

  • filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.

  • where_document (Optional[Dict[str, str]]) –

  • kwargs (Any) –

  • Returns

    List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.

    Return type

    List[Tuple[Document, float]]

    similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) List[Tuple[Document, float]]

    Return docs and relevance scores in the range [0, 1].

    0 is dissimilar, 1 is most similar.

    Parameters
  • query (str) – Input text.

  • k (int) – Number of Documents to return. Defaults to 4.

  • **kwargs (Any) –

    kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to

    filter the resulting set of retrieved docs.

    similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, where_document: Optional[Dict[str, str]] = None, **kwargs: Any) List[Tuple[Document, float]][source]

    Run similarity search with Chroma with distance.

    Parameters
  • query (str) – Query text to search for.

  • k (int) – Number of results to return. Defaults to 4.

  • filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.

  • where_document (Optional[Dict[str, str]]) –

  • kwargs (Any) –

  • Returns

    List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity.

    Return type

    List[Tuple[Document, float]]

    update_document(document_id: str, document: Document) None[source]

    Update a document in the collection.

    Parameters
  • document_id (str) – ID of the document to update.

  • document (Document) – Document to update.

  • Return type
    update_documents(ids: List[str], documents: List[Document]) None[source]

    Update a document in the collection.

    Parameters
  • ids (List[str]) – List of ids of the document to update.

  • documents (List[Document]) – List of documents to update.

  • Return type
  • Build a Local RAG Application

  • Build a Query Analysis System

  • Build a Retrieval Augmented Generation (RAG) App

  • Chroma

  • Confident

  • Conversational RAG

  • Docugami

  • Google Cloud Vertex AI Reranker

  • How deal with high cardinality categoricals when doing query analysis

  • How to add chat history

  • How to add retrieval to chatbots

  • How to create and query vector stores

  • How to do “self-querying” retrieval

  • How to get your RAG application to return sources

  • How to handle cases where no queries are generated

  • How to handle multiple queries when doing query analysis

  • How to handle multiple retrievers when doing query analysis

  • How to reorder retrieved results to mitigate the “lost in the middle” effect

  • How to retrieve using multiple vectors per document

  • How to select examples by similarity

  • How to stream results from your RAG application

  • How to use few shot examples

  • How to use few shot examples in chat models

  • How to use the MultiQueryRetriever

  • How to use the Parent Document Retriever

  • LOTR (Merger Retriever)

  • Psychic

  • RePhraseQuery

  • Vector stores and retrievers

  •