1.1. 研究对象
纳入标准:① 年龄 20~79 岁;② 无明确枕颈区疼痛症状且影像学未见明确枕颈区异常的健康成人;③ MRI 检查后颅窝脑组织及各骨性测量标志显示完整;④ 枕颈区或颅内无外伤或手术史。排除标准:① 颅内占位者;② 颅骨存在先天性畸形者;③ 既往存在神经系统疾病者。
选取 2015 年 2 月—2019 年 6 月于西南医科大学附属医院体检中心行颈椎 MRI 的体检者,依据纳入及排除标准,共 268 例体检者符合要求,按照年龄段分为 20~29 岁、30~39 岁、40~49 岁、50~59 岁、60~69 岁,在每个年龄段随机选取 30 例体检者,男女比例为 1∶1。最终 180 例纳入研究,年龄 20~79 岁,平均 50.4 岁。
1.2. 测量方法
所有研究对象均采用 1.5T 磁共振成像仪(Philips 公司,荷兰)行枕部及颈椎 MRI 扫描,由西南医科大学附属医院 2 名脊柱外科主治医师通过医院计算机影像储存系统(Net.APP PACS)进行测量分析。
测量指标:① 后颅窝线性容积:通过后颅窝各骨性标志间线性参数测量获得
[
11
-
12
]
。具体方法:于 MRI T2 加权像(T2 加权序列:TR 2 900 ms,TE 120 ms)正中矢状位层面上明确各骨性标志点位置,包括鞍背顶点(A)、枕骨大孔正中前缘点(B)、枕骨大孔正中后缘点(C)、枕内粗隆点(D)。测量斜坡长度(AB)、枕骨大孔前后径(BC)、枕骨鳞部长度(CD)、后颅窝矢状径(DA)、后颅窝高径(BE,枕骨大孔骨性前缘至后颅窝矢状径的距离)、斜坡倾斜角(∠α,枕骨斜坡轴线与枕大孔平面所形成的锐角)。见
。② 小脑扁桃体下缘位置
[
13
]
:以枕骨大孔前后径作为基线,测量小脑扁桃体下缘至基线的距离(MN)。基线为 0,基线之上为正值,基线之下为负值。见
。2 名测量者于不同时间点分别测量 3 次,测量时间间隔至少 2 周,结果取均值。
1.3. 统计学方法
采用 SPSS17.0 统计软件进行分析。计量资料以均数±标准差表示,男女性别组间比较采用独立样本
t
检验;采用 Pearson 相关分析年龄与后颅窝线性容积各指标及小脑扁桃体下缘位置的关系。检验水准
α
=0.05。
3. 讨论
Chiari 畸形Ⅰ型主要表现为小脑扁桃体向枕骨大孔以下延伸,疝入枕骨大孔平面以下,从而导致小脑、脑干、脊髓、后组颅神经和上段颈神经受损,并产生相应临床症状,且常合并脊髓空洞。目前影像学用于诊断 Chiari 畸形Ⅰ型的主要标准为小脑扁桃体疝入枕骨大孔下部至少 5 mm
[
14
]
。对于 Chiari 畸形Ⅰ型发病机制,目前国内外多数学者认同与后颅窝容积相对狭小有关
[
3
,
12
,
15
-
16
]
。国外研究者针对 Chiari 畸形Ⅰ型的流行病学调查研究发现,Chiari 畸形Ⅰ型在儿童、青少年与成人均可发病,但好发于青少年,同时在儿童及青少年的 Chiari 畸形Ⅰ型患者中,男女之间发病率并无差异
[
17
]
。Yarbrough 等
[
18
]
针对青少年 Chiari 畸形Ⅰ型患者后颅窝容积研究发现,年龄对青少年患者的后颅窝容积影响较大,主要原因为颅骨骨缝未完全闭合。国外其他研究者也证实了年龄对青少年患者的后颅窝容积影响较大,同时发现在青少年时期,小脑扁桃体下缘位置随年龄增长呈现逐渐下降的趋势
[
15
]
。国内吴涛等
[
19
]
的研究表明青少年在 16~20 岁时骨骼发育成熟,后颅窝容积基本稳定。然而我们查阅 Chiari 畸形Ⅰ型成人患者的流行病学相关文献发现,女性多于男性,且有症状的 Chiari 畸形Ⅰ型多见于中老年患者
[
10
]
。对于骨骼已发育成熟的成年人,性别及年龄对成人后颅窝容积是否存在影响尚不明确。因此,我们针对 Chiari 畸形Ⅰ型成人患者流行病学发病特点,选择后颅窝发育成熟的健康成人作为研究对象,探讨年龄及性别对成人后颅窝容积及小脑扁桃体下缘位置的影响。
针对后颅窝形态的研究
[
1
,
20
]
,目前已有多项参数被阐明,主要包括:① 一维,特定骨性标志物之间的长度及距离测量;② 二维,角度及面积比;③ 三维,体积及体积比。国外针对成人后颅窝容积的二维及三维测量均发现女性后颅窝容积小于男性
[
1
,
21
]
。对后颅窝形态的三维立体研究,虽然利用相对较薄的磁共振(MR)和 CT 平扫进行后颅窝特定结构的近似体积计算,但即使是运用计算机程序,对后颅窝容积和小脑扁桃体的体积测量也是比较耗时的,且目前此类技术在临床上运用并未普及。有学者通过回顾性研究认为线性测量方法可用于评估后颅窝容积,具有较高准确性
[
12
]
,且测量方法较为简便,便于临床使用。因此我们随机抽取了我国西南地区不同性别、不同年龄的健康成人,并对其后颅窝线性容积及小脑扁桃体下缘位置进行影像学测量,旨在分析年龄及性别对后颅窝线性容积及小脑扁桃体下缘位置的影响。研究结果显示,后颅窝线性容积存在性别差异,男性大于女性,且差异有统计学意义(
P
<0.05)。由此可见,无论是后颅窝容积的一维、二维或三维测量均显示女性后颅窝容积小于男性,这可能是 Chiari 畸形Ⅰ型在女性中更易诊断的原因之一。
Smith 等
[
15
]
对 2 400 名 0~90 岁人群的小脑扁桃体下缘位置研究发现,在大部分年龄组中,女性平均小脑扁桃体下缘位置较男性低,并有统计学差异。Sun 等
[
22
]
发现脊柱侧凸女性患儿的平均小脑扁桃体下缘位置比男性患儿略低,但其样本量较少,且差异无统计学意义。柏根基等
[
13
]
对 525 例 0~80 岁正常人于中立矢状位 MRI 上测量小脑扁桃体下缘位置,发现男性小脑扁桃体下缘位置较女性稍低。本研究也得出相似结论,小脑扁桃体下缘位置相对于枕骨大孔平面遵循正态分布,不存在性别差异。我们考虑国内外针对小脑扁桃体下缘位置研究的差异可能与人种与地域有关,因此对于小脑扁桃体下缘位置的研究需大样本多中心研究进行验证。
本研究结果显示,年龄也是影响后颅窝线性容积及小脑扁桃体下缘位置的一个重要因素,二者均存在增龄性退变减小的变化过程。Lirng 等
[
1
]
通过 MRI 对 52 名成人后颅窝三维容积进行半自动测量,发现随着年龄增长,后颅窝三维容积逐渐减小,与本研究结果一致。我们认为,小脑扁桃体下缘位置随年龄增长出现逐步向枕骨大孔靠近的趋势,可能是由于后颅窝容积出现增龄性退变减小,后颅窝更加拥挤所致。因此本研究结果可以解释成人的 Chiari 畸形Ⅰ型患者流行病学特点,即女性多于男性,且有症状者多见于中老年患者。
Chiari 畸形患者中 37%~75% 合并脊髓空洞
[
5
]
。目前 Chiari 畸形伴脊髓空洞的原理尚未明确,被大多数学者接受的是 Gardner
[
23
]
的流体动力学理论。该理论是指由于枕大孔区阻塞,进而导致脑脊液自第四脑室由中央管上口流至中央管,并经过脉络丛动脉搏动波的转移产生动力所致“水锤效应”令其扩增。李洋等
[
12
]
对 23 例 Chiari 畸形患者的后颅窝线性容积测量发现,合并脊髓空洞者 AB 值为(35.3±4.2)mm,∠α 为(45.8±7.6)°,并证明无论在青少年还是成人,斜坡低平、短小都与小脑扁桃体下疝程度及脊髓空洞的发生相关。国外有学者
[
24
]
研究发现与不伴脊髓空洞的 Chiari 畸形Ⅰ 型患者相比,伴脊髓空洞的 Chiari 畸形Ⅰ 型患者 BC 值显著更小,平均 33.8 mm。本研究对我国西南地区 180 例成人后颅窝线性容积测量发现,AB 值为(40.14±3.87)mm、BC 值为(37.31±3.15)mm、∠α 为(62.19±5.04)°。对于 Chiari 畸形早期患者,我们建议可进行后颅窝线性容积测量,如发现患者斜坡短小、低平或枕骨大孔前后径短,可早期手术干预,减少脊髓空洞发生或恶化风险。
本研究存在的不足:第一,本研究于 MRI T2 加权像中立矢状位上行二维后颅窝线性容积测量,未行后颅窝 CT 三维重建,无法精确反映后颅窝容积;第二,选取对象仅为随机筛选的我院体检中心行颈椎 MRI 的成人,未对社会整体人群随机抽样;第三,研究对象多为我国西南地区成人,具有一定地域局限性。上述不足将在进一步研究中逐渐完善。
作者贡献:杨胜、唐超参与研究设计与实施、数据测量及统计分析、文章撰写;钟德君对研究思路进行完善和指导,并对文章的知识性内容作批评性审阅;李海波对研究思路进行完善和指导,并协助完成影像学参数的数据收集。
利益冲突:所有作者声明,在课题研究和文章撰写过程中不存在利益冲突。
机构伦理问题:研究方案经西南医科大学附属医院伦理委员会批准(KY2021097)。
References
1.
Lirng JF, Fuh JL, Chen YY, et al Posterior cranial fossa crowdedness is related to age and sex: an magnetic resonance volumetric study.
Acta Radiol.
2005;
46
(7):737–742. doi: 10.1080/02841850500216269.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
Chiari H Concerning alterations in the cerebellum resulting from cerebral hydrocephalus. 1891.
Pediatr Neurosci.
1987;
13
(1):3–8. doi: 10.1159/000120293.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
Marin-Padilla M, Marin-Padilla TM Morphogenesis of experimentally induced Arnold—Chiari malformation.
J Neurol Sci.
1981;
50
(1):29–55. doi: 10.1016/0022-510X(81)90040-X.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
Milhorat TH, Chou MW, Trinidad EM, et al Chiari Ⅰ malformation redefined: clinical and radiographic findings for 364 symptomatic patients.
Neurosurgery.
1999;
44
(5):1005–1017. doi: 10.1097/00006123-199905000-00042.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
Elster AD, Chen MY Chiari Ⅰ malformations: clinical and radiologic reappraisal.
Radiology.
1992;
183
(2):347–353. doi: 10.1148/radiology.183.2.1561334.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
Meadows J, Kraut M, Guarnieri M, et al Asymptomatic Chiari type Ⅰ malformations identified on magnetic resonance imaging.
J Neurosurg.
2000;
92
(6):920–926. doi: 10.3171/jns.2000.92.6.0920.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
8.
Novegno F, Caldarelli M, Massa A, et al The natural history of the Chiari type Ⅰ anomaly.
J Neurosurg Pediatr.
2008;
2
(3):179–187. doi: 10.3171/PED/2008/2/9/179.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
Strahle J, Muraszko KM, Kapurch J, et al Chiari malformation type Ⅰ and syrinx in children undergoing magnetic resonance imaging.
J Neurosurg Pediatr.
2011;
8
(2):205–213. doi: 10.3171/2011.5.PEDS1121.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
Kahn EN, Muraszko KM, Maher CO Prevalence of Chiari Ⅰ malformation and syringomyelia.
Neurosurg Clin N Am.
2015;
26
(4):501–507. doi: 10.1016/j.nec.2015.06.006.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
Karagöz F, Izgi N, Kapíjcíjoğlu Sencer S Morphometric measurements of the cranium in patients with Chiari type Ⅰ malformation and comparison with the normal population.
Acta Neurochir (Wien)
2002;
144
(2):165–171. doi: 10.1007/s007010200020.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
李洋, 袁鑫鑫, 孙伟翔, 等 成人Chiari畸形Ⅰ型后颅窝线性容积特征与小脑扁桃体下疝程度和脊髓空洞的相关性分析
中国脊柱脊髓杂志
2016;
26
(8):709–714. doi: 10.3969/j.issn.1004-406X.2016.08.07.
[
CrossRef
]
[
Google Scholar
]
13.
柏根基, 张金坤, 王德杭 小脑扁桃体位置与年龄相关性变化的MRI研究
中国临床医学影像杂志
2001;
12
(5):305–307. doi: 10.3969/j.issn.1008-1062.2001.05.001.
[
CrossRef
]
[
Google Scholar
]
14.
Trigylidas T, Baronia B, Vassilyadi M, et al Posterior fossa dimension and volume estimates in pediatric patients with Chiari Ⅰ malformations.
Childs Nerv Syst.
2008;
24
(3):329–336. doi: 10.1007/s00381-007-0432-4.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
Smith BW, Strahle J, Bapuraj JR, et al Distribution of cerebellar tonsil position: implications for understanding Chiari malformation.
J Neurosurg.
2013;
119
(3):812–819. doi: 10.3171/2013.5.JNS121825.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
Tubbs RS, Hill M, Loukas M, et al Volumetric analysis of the posterior cranial fossa in a family with four generations of the Chiari malformation type Ⅰ
J Neurosurg Pediatr.
2008;
1
(1):21–24. doi: 10.3171/PED-08/01/021.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
Tubbs RS, McGirt MJ, Oakes WJ Surgical experience in 130 pediatric patients with Chiari I malformations.
J Neurosurg.
2003;
99
(2):291–296. doi: 10.3171/jns.2003.99.2.0291.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
Yarbrough CK, Greenberg JK, Park TS Clinical outcome measures in Chiari Ⅰ malformation.
Neurosurg Clin N Am.
2015;
26
(4):533–541. doi: 10.1016/j.nec.2015.06.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
19.
吴涛, 刘臻, 朱泽章, 等 Chiari畸形Ⅰ型患者后颅窝线性容积的MRI测量
中国脊柱脊髓杂志
2012;
22
(1):44–48. doi: 10.3969/j.issn.1004-406X.2012.01.09.
[
CrossRef
]
[
Google Scholar
]
20.
Aylward EH, Reiss A Area and volume measurement of posterior fossa structures in MRI.
J Psychiatr Res.
1991;
25
(4):159–168. doi: 10.1016/0022-3956(91)90020-B.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
Iqbal S, Robert AP, Mathew D Computed tomographic study of posterior cranial fossa, foramen magnum, and its surgical implications in Chiari malformations.
Asian J Neurosurg.
2017;
12
(3):428–435. doi: 10.4103/1793-5482.175627.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
22.
Sun X, Qiu Y, Zhu Z, et al Variations of the position of the cerebellar tonsil in idiopathic scoliotic adolescents with a cobb angle>40 degrees: a magnetic resonance imaging study.
Spine (Phila Pa 1976)
2007;
32
(15):1680–1686. doi: 10.1097/BRS.0b013e318074d3f5.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
Gardner WJ. Hydrodynamic mechanism of syringomyelia: its relationship to myelocele. J Neurol Neurosurg Psychiatry, 1965, 28(3): 247-259.
24.
Eppelheimer MS, Houston JR, Bapuraj JR, et al. A retrospective 2D morphometric analysis of adult female Chiari Type Ⅰ patients with commonly reported and related conditions. Front Neuroanat, 2018, 12: 2. doi: 10.3389/fnana.2018.00002.