正则化是用来解决神经网络过拟合的问题,通过降低模型的复杂性和约束权值,迫使神经网络学习可泛化的特征
Dropconnect在测试期间采用了与标准dropout不同的方法。作者提出了dropconnect在每个神经元处的高斯近似,然后从这个高斯函数中抽取一个样本并传递给神经元激活函数。这使得dropconnect在测试时和训练时都是一种随机方法。
伯努利分布:0-1分布
dropblock:是针对卷积层的正则化方法,相比较于dropout的random mute,能够更有效地remove掉部分语义信息,block size=1的时候退化成dropout
papers
[dropout] Improving neural networks by preventing co-adaptation of feature detectors,丢节点
[drop connect] Regularization of neural networks using dropconnect,丢weight path
[Stochastic Depth] Deep Networks with Stochastic Depth,丢layer
[DropBlock] A regularization method for convolutional networks
drop大法一句话汇总
deeper
resnet
when输入输出channel数不match:redefine id(·) as a linear projection to reduce the dimensions
our approach