添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
相关文章推荐
干练的西装  ·  Could not resolve ...·  5 月前    · 
瘦瘦的绿茶  ·  Terrence Sejnowski ...·  6 月前    · 
安静的黄豆  ·  埃安AION ...·  1 年前    · 
成熟的火柴  ·  remote desktop - ...·  1 年前    · 
Abstract

New transformer networks have been integrated into object tracking pipelines and have demonstrated strong performance on the latest benchmarks. This paper focuses on understanding how transformer trackers behave under adversarial attacks and how different attacks perform on tracking datasets as their parameters change. We conducted a series of experiments to evaluate the effectiveness of existing adversarial attacks on object trackers with transformer and non-transformer backbones. We experimented on 7 different trackers, including 3 that are transformer-based, and 4 which leverage other architectures. These trackers are tested against 4 recent attack methods to assess their performance and robustness on VOT2022ST, UAV123 and GOT10k datasets. Our empirical study focuses on evaluating adversarial robustness of object trackers based on bounding box versus binary mask predictions, and attack methods at different levels of perturbations. Interestingly, our study found that altering the perturbation level may not significantly affect the overall object tracking results after the attack. Similarly, the sparsity and imperceptibility of the attack perturbations may remain stable against perturbation level shifts. By applying a specific attack on all transformer trackers, we show that new transformer trackers having a stronger cross-attention modeling achieve a greater adversarial robustness on tracking datasets, such as VOT2022ST and GOT10k. Our results also indicate the necessity for new attack methods to effectively tackle the latest types of transformer trackers. The codes necessary to reproduce this study are available at this https URL.

Abstract (translated)

新Transformer网络已经集成到物体跟踪管道中,并在最新的基准测试中展示了强大的性能。本文重点了解Transformer跟踪器在对抗攻击下的行为以及随着参数变化,不同攻击对跟踪数据集的影响。我们进行了一系列实验来评估现有攻击方法对使用Transformer和non-Transformer后端的物体跟踪器的效果。我们对7个不同的跟踪器进行了实验,包括3个基于Transformer的跟踪器和4个采用其他架构的跟踪器。这些跟踪器针对4个最近的安全检测(VOT2022ST)、无人机(UAV123)和通用物体检测(GOT10k)数据集进行了测试。我们的实证研究重点在于评估基于边界框和二进制掩码预测的物体跟踪器的 adversarial 鲁棒性以及不同攻击级别下的影响。有趣的是,我们的研究发现,在攻击之后,改变扰动级别可能不会显著影响整体物体跟踪结果。同样,攻击对扰动级别的稀疏性和不可感知性可能仍然保持稳定。通过针对所有Transformer跟踪器应用特定攻击,我们发现具有更强的跨注意力建模的新Transformer跟踪器在跟踪数据集上的 adversarial 鲁棒性更大,比如VOT2022ST 和 GOT10k。我们的研究结果还表明,新的攻击方法需要有效地应对最新的Transformer跟踪器。 复现本研究的代码可用在以下链接:https://<https://github.com/your-username>

https://arxiv.org/abs/2406.01765

PDF

https://arxiv.org/pdf/2406.01765.pdf