SGD代码实现python
时间: 2024-06-22 09:01:25
浏览: 8
SGD(Stochastic Gradient Descent,随机梯度下降)是一种常用的优化算法,用于训练机器学习模型。在Python中,我们可以使用深度学习库如[tensor](https://geek.csdn.net/educolumn/0ebc891269ff76b86c4b41f64bffd5db?spm=1055.2569.3001.10083)Flow或PyTorch来实现SGD。以下是一个简单的使用Python和[tensor](https://geek.csdn.net/educolumn/0ebc891269ff76b86c4b41f64bffd5db?spm=1055.2569.3001.10083)Flow实现SGD的示例:
```python
import [tensor](https://geek.csdn.net/educolumn/0ebc891269ff76b86c4b41f64bffd5db?spm=1055.2569.3001.10083)flow as tf
# 假设我们有一个简单的线性回归模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(units=1, input_shape=)
# 定义损失[函数](https://geek.csdn.net/educolumn/ba94496e6cfa8630df5d047358ad9719?dp_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6NDQ0MDg2MiwiZXhwIjoxNzA3MzcxOTM4LCJpYXQiOjE3MDY3NjcxMzgsInVzZXJuYW1lIjoid2VpeGluXzY4NjQ1NjQ1In0.RrTYEnMNYPC7AQdoij4SBb0kKEgHoyvF-bZOG2eGQvc&spm=1055.2569.3001.10083)(如均方误差)和优化器(SGD)
loss_fn = tf.keras.losses.MeanSquaredError()
optimizer = tf.keras.optimizers.SGD([learn](https://geek.csdn.net/educolumn/00b6a1b1fad077eafad2b50b0230c4b0?spm=1055.2569.3001.10083)ing_rate=0.01) # 学习率设为0.01
# 假设我们有一个数据集x_data和y_data
x_data = tf.constant([, , , ])
y_data = tf.constant([, , , ])
# 模型训练
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
predictions = model(x)
loss = loss_fn(y, predictions)
gradients = tape.gradient(loss
```
相关推荐

















