添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

pivot_longer() "lengthens" data, increasing the number of rows and decreasing the number of columns. The inverse transformation is pivot_wider()

Learn more in vignette("pivot") .

Usage

pivot_longer(
  data,
  cols,
  ...,
  cols_vary = "fastest",
  names_to = "name",
  names_prefix = NULL,
  names_sep = NULL,
  names_pattern = NULL,
  names_ptypes = NULL,
  names_transform = NULL,
  names_repair = "check_unique",
  values_to = "value",
  values_drop_na = FALSE,
  values_ptypes = NULL,
  values_transform = NULL
    

Arguments

A data frame to pivot.

<tidy-select> Columns to pivot into longer format.

Additional arguments passed on to methods.

cols_vary

When pivoting cols into longer format, how should the output rows be arranged relative to their original row number?

  • "fastest", the default, keeps individual rows from cols close together in the output. This often produces intuitively ordered output when you have at least one key column from data that is not involved in the pivoting process.

  • "slowest" keeps individual columns from cols close together in the output. This often produces intuitively ordered output when you utilize all of the columns from data in the pivoting process.

  • names_to

    A character vector specifying the new column or columns to create from the information stored in the column names of data specified by cols.

    • If length 0, or if NULL is supplied, no columns will be created.

    • If length 1, a single column will be created which will contain the column names specified by cols.

    • If length >1, multiple columns will be created. In this case, one of names_sep or names_pattern must be supplied to specify how the column names should be split. There are also two additional character values you can take advantage of:

      • NA will discard the corresponding component of the column name.

      • ".value" indicates that the corresponding component of the column name defines the name of the output column containing the cell values, overriding values_to entirely.

      • names_prefix

        A regular expression used to remove matching text from the start of each variable name.

        names_sep, names_pattern

        If names_to contains multiple values, these arguments control how the column name is broken up.

        names_sep takes the same specification as separate(), and can either be a numeric vector (specifying positions to break on), or a single string (specifying a regular expression to split on).

        names_pattern takes the same specification as extract(), a regular expression containing matching groups (()).

        If these arguments do not give you enough control, use pivot_longer_spec() to create a spec object and process manually as needed.

        names_ptypes, values_ptypes

        Optionally, a list of column name-prototype pairs. Alternatively, a single empty prototype can be supplied, which will be applied to all columns. A prototype (or ptype for short) is a zero-length vector (like integer() or numeric()) that defines the type, class, and attributes of a vector. Use these arguments if you want to confirm that the created columns are the types that you expect. Note that if you want to change (instead of confirm) the types of specific columns, you should use names_transform or values_transform instead.

        names_transform, values_transform

        Optionally, a list of column name-function pairs. Alternatively, a single function can be supplied, which will be applied to all columns. Use these arguments if you need to change the types of specific columns. For example, names_transform = list(week = as.integer) would convert a character variable called week to an integer.

        If not specified, the type of the columns generated from names_to will be character, and the type of the variables generated from values_to will be the common type of the input columns used to generate them.

        names_repair

        What happens if the output has invalid column names? The default, "check_unique" is to error if the columns are duplicated. Use "minimal" to allow duplicates in the output, or "unique" to de-duplicated by adding numeric suffixes. See vctrs::vec_as_names() for more options.

        values_to

        A string specifying the name of the column to create from the data stored in cell values. If names_to is a character containing the special .value sentinel, this value will be ignored, and the name of the value column will be derived from part of the existing column names.

        values_drop_na

        If TRUE, will drop rows that contain only NAs in the value_to column. This effectively converts explicit missing values to implicit missing values, and should generally be used only when missing values in data were created by its structure.

        Details

        pivot_longer() is an updated approach to gather(), designed to be both simpler to use and to handle more use cases. We recommend you use pivot_longer() for new code; gather() isn't going away but is no longer under active development.

        Examples

        # See vignette("pivot") for examples and explanation
        # Simplest case where column names are character data
        relig_income
        #> # A tibble: 18 × 11
        #>    religion      `<$10k` `$10-20k` `$20-30k` `$30-40k` `$40-50k` `$50-75k`
        #>    <chr>           <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
        #>  1 Agnostic           27        34        60        81        76       137
        #>  2 Atheist            12        27        37        52        35        70
        #>  3 Buddhist           27        21        30        34        33        58
        #>  4 Catholic          418       617       732       670       638      1116
        #>  5 Don’t know/r…      15        14        15        11        10        35
        #>  6 Evangelical …     575       869      1064       982       881      1486
        #>  7 Hindu               1         9         7         9        11        34
        #>  8 Historically…     228       244       236       238       197       223
        #>  9 Jehovah's Wi…      20        27        24        24        21        30
        #> 10 Jewish             19        19        25        25        30        95
        #> 11 Mainline Prot     289       495       619       655       651      1107
        #> 12 Mormon             29        40        48        51        56       112
        #> 13 Muslim              6         7         9        10         9        23
        #> 14 Orthodox           13        17        23        32        32        47
        #> 15 Other Christ…       9         7        11        13        13        14
        #> 16 Other Faiths       20        33        40        46        49        63
        #> 17 Other World …       5         2         3         4         2         7
        #> 18 Unaffiliated      217       299       374       365       341       528
        #> # ℹ 4 more variables: `$75-100k` <dbl>, `$100-150k` <dbl>, `>150k` <dbl>,
        #> #   `Don't know/refused` <dbl>
        relig_income %>%
          pivot_longer(!religion, names_to = "income", values_to = "count")
        #> # A tibble: 180 × 3
        #>    religion income             count
        #>    <chr>    <chr>              <dbl>
        #>  1 Agnostic <$10k                 27
        #>  2 Agnostic $10-20k               34
        #>  3 Agnostic $20-30k               60
        #>  4 Agnostic $30-40k               81
        #>  5 Agnostic $40-50k               76
        #>  6 Agnostic $50-75k              137
        #>  7 Agnostic $75-100k             122
        #>  8 Agnostic $100-150k            109
        #>  9 Agnostic >150k                 84
        #> 10 Agnostic Don't know/refused    96
        #> # ℹ 170 more rows
        # Slightly more complex case where columns have common prefix,
        # and missing missings are structural so should be dropped.
        billboard
        #> # A tibble: 317 × 79
        #>    artist     track date.entered   wk1   wk2   wk3   wk4   wk5   wk6   wk7
        #>    <chr>      <chr> <date>       <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
        #>  1 2 Pac      Baby… 2000-02-26      87    82    72    77    87    94    99
        #>  2 2Ge+her    The … 2000-09-02      91    87    92    NA    NA    NA    NA
        #>  3 3 Doors D… Kryp… 2000-04-08      81    70    68    67    66    57    54
        #>  4 3 Doors D… Loser 2000-10-21      76    76    72    69    67    65    55
        #>  5 504 Boyz   Wobb… 2000-04-15      57    34    25    17    17    31    36
        #>  6 98^0       Give… 2000-08-19      51    39    34    26    26    19     2
        #>  7 A*Teens    Danc… 2000-07-08      97    97    96    95   100    NA    NA
        #>  8 Aaliyah    I Do… 2000-01-29      84    62    51    41    38    35    35
        #>  9 Aaliyah    Try … 2000-03-18      59    53    38    28    21    18    16
        #> 10 Adams, Yo… Open… 2000-08-26      76    76    74    69    68    67    61
        #> # ℹ 307 more rows
        #> # ℹ 69 more variables: wk8 <dbl>, wk9 <dbl>, wk10 <dbl>, wk11 <dbl>,
        #> #   wk12 <dbl>, wk13 <dbl>, wk14 <dbl>, wk15 <dbl>, wk16 <dbl>,
        #> #   wk17 <dbl>, wk18 <dbl>, wk19 <dbl>, wk20 <dbl>, wk21 <dbl>,
        #> #   wk22 <dbl>, wk23 <dbl>, wk24 <dbl>, wk25 <dbl>, wk26 <dbl>,
        #> #   wk27 <dbl>, wk28 <dbl>, wk29 <dbl>, wk30 <dbl>, wk31 <dbl>,
        #> #   wk32 <dbl>, wk33 <dbl>, wk34 <dbl>, wk35 <dbl>, wk36 <dbl>, …
        billboard %>%
          pivot_longer(
            cols = starts_with("wk"),
            names_to = "week",
            names_prefix = "wk",
            values_to = "rank",
            values_drop_na = TRUE
        #> # A tibble: 5,307 × 5
        #>    artist  track                   date.entered week   rank
        #>    <chr>   <chr>                   <date>       <chr> <dbl>
        #>  1 2 Pac   Baby Don't Cry (Keep... 2000-02-26   1        87
        #>  2 2 Pac   Baby Don't Cry (Keep... 2000-02-26   2        82
        #>  3 2 Pac   Baby Don't Cry (Keep... 2000-02-26   3        72
        #>  4 2 Pac   Baby Don't Cry (Keep... 2000-02-26   4        77
        #>  5 2 Pac   Baby Don't Cry (Keep... 2000-02-26   5        87
        #>  6 2 Pac   Baby Don't Cry (Keep... 2000-02-26   6        94
        #>  7 2 Pac   Baby Don't Cry (Keep... 2000-02-26   7        99
        #>  8 2Ge+her The Hardest Part Of ... 2000-09-02   1        91
        #>  9 2Ge+her The Hardest Part Of ... 2000-09-02   2        87
        #> 10 2Ge+her The Hardest Part Of ... 2000-09-02   3        92
        #> # ℹ 5,297 more rows
        # Multiple variables stored in column names
        who %>% pivot_longer(
          cols = new_sp_m014:newrel_f65,
          names_to = c("diagnosis", "gender", "age"),
          names_pattern = "new_?(.*)_(.)(.*)",
          values_to = "count"
        #> # A tibble: 405,440 × 8
        #>    country     iso2  iso3   year diagnosis gender age   count
        #>    <chr>       <chr> <chr> <dbl> <chr>     <chr>  <chr> <dbl>
        #>  1 Afghanistan AF    AFG    1980 sp        m      014      NA
        #>  2 Afghanistan AF    AFG    1980 sp        m      1524     NA
        #>  3 Afghanistan AF    AFG    1980 sp        m      2534     NA
        #>  4 Afghanistan AF    AFG    1980 sp        m      3544     NA
        #>  5 Afghanistan AF    AFG    1980 sp        m      4554     NA
        #>  6 Afghanistan AF    AFG    1980 sp        m      5564     NA
        #>  7 Afghanistan AF    AFG    1980 sp        m      65       NA
        #>  8 Afghanistan AF    AFG    1980 sp        f      014      NA
        #>  9 Afghanistan AF    AFG    1980 sp        f      1524     NA
        #> 10 Afghanistan AF    AFG    1980 sp        f      2534     NA
        #> # ℹ 405,430 more rows
        # Multiple observations per row. Since all columns are used in the pivoting
        # process, we'll use `cols_vary` to keep values from the original columns
        # close together in the output.
        anscombe
        #>    x1 x2 x3 x4    y1   y2    y3    y4
        #> 1  10 10 10  8  8.04 9.14  7.46  6.58
        #> 2   8  8  8  8  6.95 8.14  6.77  5.76
        #> 3  13 13 13  8  7.58 8.74 12.74  7.71
        #> 4   9  9  9  8  8.81 8.77  7.11  8.84
        #> 5  11 11 11  8  8.33 9.26  7.81  8.47
        #> 6  14 14 14  8  9.96 8.10  8.84  7.04
        #> 7   6  6  6  8  7.24 6.13  6.08  5.25
        #> 8   4  4  4 19  4.26 3.10  5.39 12.50
        #> 9  12 12 12  8 10.84 9.13  8.15  5.56
        #> 10  7  7  7  8  4.82 7.26  6.42  7.91
        #> 11  5  5  5  8  5.68 4.74  5.73  6.89
        anscombe %>%
          pivot_longer(
            everything(),
            cols_vary = "slowest",
            names_to = c(".value", "set"),
            names_pattern = "(.)(.)"
        #> # A tibble: 44 × 3
        #>    set       x     y
        #>    <chr> <dbl> <dbl>
        #>  1 1        10  8.04
        #>  2 1         8  6.95
        #>  3 1        13  7.58
        #>  4 1         9  8.81
        #>  5 1        11  8.33
        #>  6 1        14  9.96
        #>  7 1         6  7.24
        #>  8 1         4  4.26
        #>  9 1        12 10.8 
        #> 10 1         7  4.82
        #> # ℹ 34 more rows