添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
张显石, 宋健, 宋泗锦, 李永杰. 生物视觉启发的低照度视频自适应增强设计与FPGA加速实现[J]. 电子与信息学报, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 引用本文: 张显石, 宋健, 宋泗锦, 李永杰. 生物视觉启发的低照度视频自适应增强设计与FPGA加速实现[J]. 电子与信息学报, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 Citation: ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology , 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 张显石, 宋健, 宋泗锦, 李永杰. 生物视觉启发的低照度视频自适应增强设计与FPGA加速实现[J]. 电子与信息学报, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 引用本文: 张显石, 宋健, 宋泗锦, 李永杰. 生物视觉启发的低照度视频自适应增强设计与FPGA加速实现[J]. 电子与信息学报, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology, 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 Citation: ZHANG Xianshi, SONG Jian, SONG Sijin, LI Yongjie. Design of Biological-inspired Low-light Video Adaptive Enhancement and FPGA Accelerated Implementation[J]. Journal of Electronics & Information Technology , 2023, 45(8): 2739-2748. doi: 10.11999/JEIT221346 作者简介:

张显石:男,博士,助理研究员,研究方向为视觉认知计算、计算机视觉与类脑智能

宋健:男,硕士,研究方向为大脑视觉系统的信息处理机制、计算机建模及其在计算机视觉(图像/视频处理)中的应用

宋泗锦:男,硕士生,研究方向为基于FPGA的实时图像处理

李永杰:男,博士,教授,研究方向为大脑视觉系统的信息处理机制、计算机建模及其在计算机视觉(图像/视频处理)中的应用、智能医学图像处理

通讯作者: 李永杰 [email protected]

中图分类号: TN911.73

该文基于现场可编程门阵列实现了受生物视觉机制启发的夜间图像增强模型,实时高效地对夜间低照度视频图像进行自适应增强。受初级视觉系统中大小细胞通路启发,该文采取独立的两条通路分别处理结构与细节信息,获得了较好的处理效果与处理效率。为了实现对高清视频的实时增强,基于现场可编程门阵列对该文算法进行了加速实现。通过滑动数据窗并行处理、相邻帧信息共享、多通道并行化等硬件设计保证高数据吞吐量。该设计在 XC7Z100现场可编程门阵列上达到对1080P@60 Hz彩色视频增强的实时性要求。与本领域已有设计相比,该文设计具有更高的数据吞吐量,适用于高分辨率实时图像增强应用。 生物视觉计算模型 /  图像增强 /  现场可编程门阵列 Abstract: A nighttime image enhancement model is proposed in this paper, which is inspired by biological vision mechanism and implemented on Field Programmable Gate Arrays (FPGA) for real-time enhancement of low-light videos and images. Inspired by the Midget cells and the Parasol cells in the early visual system, the proposed method processes the structure and detail information through two independent pathways respectively, and obtains a nice effect and efficiency. To achieve real-time enhancement of high-resolution videos, this paper implements the proposed method on Field Programmable Gate Arrays. High data throughput is ensured through hardware design such as sliding data window parallel processing, adjacent frame information sharing, and multi-channel parallelization. Implemented on Field Programmable Gate Arrays XC7Z100, the proposed design achieves processing 60 frames per second for 1024 × 768 RGB images. Compared with existing designs in this field, the proposed design has higher data throughput and is suitable for high-resolution real-time image enhancement applications. Key words: Biological vision computation model /  Image enhancement /  Field Programmable Gate Arrays (FPGA)  陈勇, 陈东, 刘焕淋, 等. 基于深度卷积神经网络的无参考低照度图像增强[J]. 电子与信息学报, 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386

CHEN Yong, CHEN Dong, LIU Huanlin, et al . Unreferenced low-lighting image enhancement based on deep convolutional neural network[J]. Journal of Electronics & Information Technology , 2022, 44(6): 2166–2174. doi: 10.11999/JEIT210386 VELUCHAMY M, BHANDARI A K, and SUBRAMANI B. Optimized bezier curve based intensity mapping scheme for low light image enhancement[J]. IEEE Transactions on Emerging Topics in Computational Intelligence , 2022, 6(3): 602–612. doi: 10.1109/TETCI.2021.3053253 KIM W. Low-light image enhancement: a comparative review and prospects[J]. IEEE Access , 2022, 10: 84535–84557. doi: 10.1109/ACCESS.2022.3197629 YANG Kaifu, ZHANG Xianshi, and LI Yongjie. A biological vision inspired framework for image enhancement in poor visibility conditions[J]. IEEE Transactions on Image Processing , 2020, 29: 1493–1506. doi: 10.1109/TIP.2019.2938310 向森, 王应锋, 邓慧萍, 等. 基于双重迭代的零样本低照度图像增强[J]. 电子与信息学报, 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593

XIANG Sen, WANG Yingfeng, DENG Huiping, et al . Zero-shot learning for low-light image enhancement based on dual iteration[J]. Journal of Electronics & Information Technology , 2022, 44(10): 3379–3388. doi: 10.11999/JEIT211593 LI Chongyi, GUO Chunle, HAN Linghao, et al . Low-light image and video enhancement using deep learning: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2022, 44(12): 9396–9416. doi: 10.1109/TPAMI.2021.3126387 LI Mading, LIU Jiaying, YANG Wenhan, et al . Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE Transactions on Image Processing , 2018, 27(6): 2828–2841. doi: 10.1109/TIP.2018.2810539 JIANG Xuesong, YAO Hongxun, and LIU Dilin. Nighttime image enhancement based on image decomposition[J]. Signal , Image and Video Processing , 2019, 13(1): 189–197. doi: 10.1007/s11760-018-1345-2 GUO Xiaojie, LI Yu, and LING Haibin. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing , 2017, 26(2): 982–993. doi: 10.1109/TIP.2016.2639450 YANG Wenhan, WANG Wenjing, HUANG Haofeng, et al . Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing , 2021, 30: 2072–2086. doi: 10.1109/TIP.2021.3050850 ZHANG Yonghua, GUO Xiaojie, MA jiayi, et al . Beyond brightening low-light images[J]. International Journal of Computer Vision , 2021, 129(4): 1013–1037. doi: 10.1007/s11263-020-01407-x LIU Risheng, MA Long, ZHANG Jiaao, et al . Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]. The 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 10556–10565. MA Long, LIU Risheng, WANG Yiyang, et al . Low-light image enhancement via self-reinforced retinex projection model[J]. IEEE Transactions on Multimedia , To be published. GUO Xiaojie and HU Qiming. Low-light image enhancement via breaking down the darkness[J]. International Journal of Computer Vision , 2023, 131(1): 48–66. doi: 10.1007/s11263-022-01667-9 ZHANG Xianshi, YANG Kaifu, ZHOU Jun, et al . Retina inspired tone mapping method for high dynamic range images[J]. Optics Express , 2020, 28(5): 5953–5964. doi: 10.1364/OE.380555 YANG Kaifu, CHENG Cheng, ZHAO Shixuan, et al . Learning to adapt to light[J]. International Journal of Computer Vision , 2023, 131(4): 1022–1041. doi: 10.1007/s11263-022-01745-y LIU Xiaokai, MA Weihao, MA Xiaorui, et al . LAE-Net: A locally-adaptive embedding network for low-light image enhancement[J]. Pattern Recognition , 2023, 133: 109039. doi: 10.1016/j.patcog.2022.109039 HAI Jiang, XUAN Zhu, YANG Ren, et al . R2RNet: Low-light image enhancement via real-low to real-normal network[J]. Journal of Visual Communication and Image Representation , 2023, 90: 103712. doi: 10.1016/j.jvcir.2022.103712 WU Yuhui, PAN Chen, WANG Guoqing, et al . Learning semantic-aware knowledge guidance for low-light image enhancement[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023. FUTSCHIK D, RITLAND K, VECORE J, et al . Controllable light diffusion for portraits[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, 2023. UREÑA R, MARTÍNEZ-CAÑADA P, GÓMEZ-LÓPEZ J M, et al . Real-time tone mapping on GPU and FPGA[J]. EURASIP Journal on Image and Video Processing , 2012, 2012: 1. doi: 10.1186/1687-5281-2012-1 LAPRAY P J, HEYRMAN B, and GINHAC D. HDR-ARtiSt: An adaptive real-time smart camera for high dynamic range imaging[J]. Journal of Real-Time Image Processing , 2016, 12(4): 747–762. doi: 10.1007/s11554-013-0393-7 CAÑADA P M, MORILLAS C, UREÑA R, et al . Embedded system for contrast enhancement in low-vision[J]. Journal of Systems Architecture , 2013, 59(1): 30–38. doi: 10.1016/j.sysarc.2012.10.005 JOSEPH L M I L and RAJARAJAN S. Reconfigurable hybrid vision enhancement system using tone mapping and adaptive gamma correction algorithm for night surveillance robot[J]. Multimedia Tools and Applications , 2019, 78(5): 6013–6032. doi: 10.1007/s11042-018-6321-x AMBALATHANKANDY P, IKEBE M, YOSHIDA T, et al . An adaptive global and local tone mapping algorithm implemented on FPGA[J]. IEEE Transactions on Circuits and Systems for Video Technology , 2020, 30(9): 3015–3028. doi: 10.1109/TCSVT.2019.2931510 YANG Jie, HORE A, and YADID-PECHT O. Local tone mapping algorithm and hardware implementation[J]. Electronics Letters , 2018, 54(9): 560–562. doi: 10.1049/el.2017.3227 SHAHNOVICH U, HORE A, and YADID-PECHT O. Hardware implementation of a real-time tone mapping algorithm based on a mantissa-exponent representation[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2210–2213. AMBALATHANKANDY P, HORÉ A, and YADID-PECHT O. An FPGA implementation of a tone mapping algorithm with a halo-reducing filter[J]. Journal of Real-Time Image Processing , 2019, 16(4): 1317–1333. doi: 10.1007/s11554-016-0635-6 FAIRCHILD M D. Seeing, adapting to, and reproducing the appearance of nature[J]. Applied Optics , 2015, 54(4): B107–B116. doi: 10.1364/AO.54.00B107 CAI Jianrui, GU Shuhang, and ZHANG Lei. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing , 2018, 27(4): 2049–2062. doi: 10.1109/TIP.2018.2794218

中国科学院电子学研究所, 北京市2702信箱, 邮编:100190

电话:010-58887066 传真:021-64253812 Email: [email protected]

北京仁和汇智信息技术有限公司