The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The
https://
ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with,
the contents by NLM or the National Institutes of Health.
Learn more:
PMC Disclaimer
Sichuan Da Xue Xue Bao Yi Xue Ban.
2023 Mar 20; 54(2): 334–341.
Language:
Chinese
|
English
新型冠状病毒感染中味觉障碍及防治
Mechanisms and Management of COVID-19-Associated Taste Disorders
,
,
,
and
Δ
欣 郑
口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041),
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
欣 徐
口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041),
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
学东 周
口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041),
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
显 彭
口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041),
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
口腔疾病研究国家重点实验室 四川大学华西口腔医院 (成都 610041),
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
References
1.
LINDEMANN B Receptors and transduction in taste.
Nature.
2001;
413
(6852):219–225. doi: 10.1038/35093032.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
2.
CHANDRASHEKAR J, HOON M A, RYBA N J, et al The receptors and cells for mammalian taste.
Nature.
2006;
444
(7117):288–294. doi: 10.1038/nature05401.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
3.
THOMAS D C, CHABLANI D, PAREKH S, et al Dysgeusia: a review in the context of COVID-19.
J Am Dent Assoc.
2022;
153
(3):251–264. doi: 10.1016/j.adaj.2021.08.009.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
4.
MAHMOUD M M, ABUOHASHISH H M, KHAIRY D A, et al Pathogenesis of dysgeusia in COVID-19 patients: a scoping review.
Eur Rev Med Pharmacol Sci.
2021;
25
(2):1114–1134. doi: 10.26355/eurrev_202101_24683.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
5.
AZIZ M, PERISETTI A, LEE-SMITH W M, et al Taste changes (dysgeusia) in COVID-19: a systematic review and meta-analysis.
Gastroenterology.
2020;
159
(3):1132–1133. doi: 10.1053/j.gastro.2020.05.003.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
6.
AGYEMAN A A, CHIN K L, LANDERSDORFER C B, et al Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis.
Mayo Clin Proc.
2020;
95
(8):1621–1631. doi: 10.1016/j.mayocp.2020.05.030.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
7.
TONG J Y, WONG A, ZHU D, et al The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: a systematic review and meta-analysis.
Otolaryngol Head Neck Surg.
2020;
163
(1):3–11. doi: 10.1177/0194599820926473.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
9.
PELLEGRINI M, MERLO F D, AGNELLO E, et al Dysgeusia in patients with breast cancer treated with chemotherapy--a narrative review.
Nutrients.
2023;
15
(1):226. doi: 10.3390/nu15010226.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
10.
JAFARI A, ALAEE A, GHODS K The etiologies and considerations of dysgeusia: a review of literature.
J Oral Biosci.
2021;
63
(4):319–326. doi: 10.1016/j.job.2021.08.006.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
11.
CHI W J, MYERS J N, FRANK S J, et al The effects of zinc on radiation-induced dysgeusia: a systematic review and meta-analysis.
Support Care Cancer.
2020;
28
(12):1–12. doi: 10.1007/s00520-020-05578-8.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
12.
MORTAZAVI H, SHAFIEI S, SADR S, et al Drug-related dysgeusia: a systematic review.
Oral Health Prev Dent.
2018;
16
(6):499–507. doi: 10.3290/j.ohpd.a41655.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
13.
SYED Q, HENDLER K T, KONCILJA K The impact of aging and medical status on dysgeusia.
Am J Med.
2016;
129
(7):753.e1–6. doi: 10.1016/j.amjmed.2016.02.003.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
15.
DULAC C The physiology of taste, vintage 2000.
Cell.
2000;
100
(6):607–610. doi: 10.1016/s0092-8674(00)80697-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
16.
NELSON G, HOON M A, CHANDRASHEKAR J, et al Mammalian sweet taste receptors.
Cell.
2001;
106
(3):381–390. doi: 10.1016/s0092-8674(01)00451-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
17.
ZHAO G Q, ZHANG Y, HOON M A, et al The receptors for mammalian sweet and umami taste.
Cell.
2003;
115
(3):255–266. doi: 10.1016/s0092-8674(03)00844-4.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
18.
CHANDRASHEKAR J, MUELLER K L, HOON M A, et al T2Rs function as bitter taste receptors.
Cell.
2000;
100
(6):703–711. doi: 10.1016/s0092-8674(00)80706-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
20.
DONG H, LIU J, ZHU J, et al Oral microbiota-host interaction mediated by taste receptors.
Front Cell Infect Microbiol.
2022;
12
:802504. doi: 10.3389/fcimb.2022.802504.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
21.
陆洋宇, 席苒珲, 郑欣, 等 味觉受体信号转导机制及对微生物的调控
华西口腔医学杂志
2017;
35
(5):549–554. doi: 10.7518/hxkq.2017.05.020.
[
CrossRef
]
[
Google Scholar
]
22.
IWATA S, YOSHIDA R, NINOMIYA Y Taste transductions in taste receptor cells: basic tastes and moreover.
Curr Pharm Des.
2014;
20
(16):2684–2692. doi: 10.2174/13816128113199990575.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
23.
LIU L, SIMON S A Acidic stimuli activates two distinct pathways in taste receptor cells from rat fungiform papillae.
Brain Res.
2001;
923
(1/2):58–70. doi: 10.1016/s0006-8993(01)03190-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
24.
STEVENS D R, SEIFERT R, BUFE B, et al Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli.
Nature.
2001;
413
(6856):631–635. doi: 10.1038/35098087.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
25.
BELTRAN L R, DAWID C, BELTRAN M, et al The effect of pungent and tingling compounds from
piper nigrum
L. on background K
+
currents.
Front Pharmacol.
2017;
8
:408. doi: 10.3389/fphar.2017.00408.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
26.
YE W, CHANG R B, BUSHMAN J D, et al The K
+
channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction.
Proc Natl Acad Sci U S A.
2016;
113
(2):E229–38. doi: 10.1073/pnas.1514282112.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
27.
ZHANG J, JIN H, ZHANG W, et al Sour sensing from the tongue to the brain.
Cell.
2019;
179
(2):392–402.e15. doi: 10.1016/j.cell.2019.08.031.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
28.
NOMURA K, NAKANISHI M, ISHIDATE F, et al All-electrical Ca
2+
-independent signal transduction mediates attractive sodium taste in taste buds.
Neuron.
2020;
106
(5):816–829.e6. doi: 10.1016/j.neuron.2020.03.006.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
29.
MCGINTY J W, TING H A, BILLIPP T E, et al Tuft-cell-derived leukotrienes drive rapid anti-helminth immunity in the small intestine but are dispensable for anti-protist immunity.
Immunity.
2020;
52
(3):528–541.e7. doi: 10.1016/j.immuni.2020.02.005.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
30.
O'LEARY C E, SCHNEIDER C, LOCKSLEY R M Tuft cells-systemically dispersed sensory epithelia integrating immune and neural circuitry.
Annu Rev Immunol.
2019;
37
:47–72. doi: 10.1146/annurev-immunol-042718-041505.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
31.
ZHENG X, TIZZANO M, REDDING K, et al Gingival solitary chemosensory cells are immune sentinels for periodontitis.
Nat Commun.
2019;
10
(1):4496. doi: 10.1038/s41467-019-12505-x.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
32.
ZHOU Z, XI R, LIU J, et al TAS2R16 activation suppresses LPS-induced cytokine expression in human gingival fibroblasts.
Front Immunol.
2021;
12
:726546. doi: 10.3389/fimmu.2021.726546.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
33.
刘佳鑫, 郑欣, 徐欣 簇细胞的信号传导机制及生物学作用
中华微生物学和免疫学杂志
2022;
42
(8):647–651. doi: 10.3760/cma.j.cn112309-20210929-00321.
[
CrossRef
]
[
Google Scholar
]
34.
GREEN B G From receptors to the brain: psychophysical clues to taste physiology.
Curr Opin Physiol.
2021;
20
:154–158. doi: 10.1016/j.cophys.2020.12.010.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
37.
XU H, ZHONG L, DENG J, et al High expression of ACE2 receptor of SARS-CoV-2 on the epithelial cells of oral mucosa.
Int J Oral Sci.
2020;
12
(1):8. doi: 10.1038/s41368-020-0074-x.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
38.
DOYLE M E, APPLETON A, LIU Q R, et al Human type Ⅱ taste cells express angiotensin-converting enzyme 2 and are infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
Am J Pathol.
2021;
191
(9):1511–1519. doi: 10.1016/j.ajpath.2021.05.010.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
39.
ROMAN G C, SPENCER P S, REIS J, et al The neurology of COVID-19 revisited: a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries.
J Neurol Sci.
2020;
414
:116884. doi: 10.1016/j.jns.2020.116884.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
40.
WITT M, MILLER I J, Jr Comparative lectin histochemistry on taste buds in foliate, circumvallate and fungiform papillae of the rabbit tongue.
Histochemistry.
1992;
98
(3):173–182. doi: 10.1007/BF00315876.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
41.
PUSHPASS R G, PELLICCIOTTA N, KELLY C, et al Reduced salivary mucin binding and glycosylation in older adults influences taste in an
in vitro
cell model.
Nutrients.
2019;
11
(10):2280. doi: 10.3390/nu11102280.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
42.
MILANETTI E, MIOTTO M, Di RIENZO L, et al In-silico evidence for a two receptor based strategy of SARS-CoV-2.
Front Mol Biosci.
2021;
8
:690655. doi: 10.3389/fmolb.2021.690655.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
43.
VAIRA L A, SALZANO G, FOIS A G, et al Potential pathogenesis of ageusia and anosmia in COVID-19 patients.
Int Forum Allergy Rhinol.
2020;
10
(9):1103–1104. doi: 10.1002/alr.22593.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
44.
Van OORT S, KRAMER E, De GROOT J W, et al Taste alterations and cancer treatment.
Curr Opin Support Palliat Care.
2018;
12
(2):162–167. doi: 10.1097/SPC.0000000000000346.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
45.
GALANIHA L T, NOLDEN A A The role of saliva in taste dysfunction among cancer patients: mechanisms and potential treatment.
Oral Oncol.
2022;
133
:106030. doi: 10.1016/j.oraloncology.2022.106030.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
46.
YAGI T, ASAKAWA A, UEDA H, et al The role of zinc in the treatment of taste disorders.
Recent Pat Food Nutr Agric.
2013;
5
(1):44–51. doi: 10.2174/2212798411305010007.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
47.
RISSO D, DRAYNA D, MORINI G Alteration, reduction and taste loss: main causes and potential implications on dietary habits.
Nutrients.
2020;
12
:11. doi: 10.3390/nu12113284.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
48.
TSUCHIYA H Gustatory and saliva secretory dysfunctions in COVID-19 patients with zinc deficiency.
Life (Basel)
2022;
12
(3):353. doi: 10.3390/life12030353.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
49.
SMITH A, FARBMAN A, DANCIS J Absence of taste-bud papillae in familial dysautonomia.
Science.
1965;
147
(3661):1040–1041. doi: 10.1126/science.147.3661.1040.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
50.
CHAMOUN E, MUTCH D M, ALLEN-VERCOE E, et al A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health.
Crit Rev Food Sci Nutr.
2018;
58
(2):194–207. doi: 10.1080/10408398.2016.1152229.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
51.
KANO M, SHIMIZU Y, OKAYAMA K, et al Quantitative study of ageing epiglottal taste buds in humans.
Gerodontology.
2007;
24
(3):169–172. doi: 10.1111/j.1741-2358.2007.00165.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
52.
MILLER I J, Jr Variation in human taste bud density as a function of age.
Ann N Y Acad Sci.
1989;
561
:307–319. doi: 10.1111/j.1749-6632.1989.tb20991.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
53.
SHIN Y K, CONG W N, CAI H, et al Age-related changes in mouse taste bud morphology, hormone expression, and taste responsivity.
J Gerontol A Biol Sci Med Sci.
2012;
67
(4):336–344. doi: 10.1093/gerona/glr192.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
54.
WHIDDON Z D, RYNBERG S T, MAST T G, et al Aging decreases chorda-tympani nerve responses to nacl and alters morphology of fungiform taste pores in rats.
Chem Senses.
2018;
43
(2):117–128. doi: 10.1093/chemse/bjx076.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
56.
FENG Y, LICANDRO H, MARTIN C, et al The associations between biochemical and microbiological variables and taste differ in whole saliva and in the film lining the tongue.
Biomed Res Int.
2018;
2018
:2838052. doi: 10.1155/2018/2838052.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
57.
QUIRYNEN M, AVONTROODT P, SOERS C, et al Impact of tongue cleansers on microbial load and taste.
J Clin Periodontol.
2004;
31
(7):506–510. doi: 10.1111/j.0303-6979.2004.00507.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
58.
OHNO T, UEMATSU H, NOZAKI S, et al Improvement of taste sensitivity of the nursed elderly by oral care.
J Med Dent Sci.
2003;
50
(1):101–107.
[
PubMed
]
[
Google Scholar
]
59.
TAKAHASHI N Oral microbiome metabolism: from "who are they"? to "what are they doing"?
J Dent Res.
2015;
94
(12):1628–1637. doi: 10.1177/0022034515606045.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
60.
GARDNER A, SO P W, CARPENTER G H Intraoral microbial metabolism and association with host taste perception.
J Dent Res.
2020;
99
(6):739–745. doi: 10.1177/0022034520917142.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
61.
FENG S, ACHOUTE L, MARGOLSKEE R F, et al Lipopolysaccharide-induced inflammatory cytokine expression in taste organoids.
Chem Senses.
2020;
45
(3):187–194. doi: 10.1093/chemse/bjaa002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
63.
邓瑾成 鼓索神经损伤引起味觉障碍临床分析
中国实用神经疾病杂志
2015;(11):97–98. doi: 10.3969/j.issn.1673-5110.2015.11.066.
[
CrossRef
]
[
Google Scholar
]
64.
TAILLIBERT S, BAZIN B, PIERROT-DESEILLIGNY C Dysgeusia resulting from internal carotid dissection. A limited glossopharyngeal nerve palsy.
J Neurol Neurosurg Psychiatry.
1998;
64
(5):691–692. doi: 10.1136/jnnp.64.5.691.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
65.
PASCUAL-LEONE A, ALTAFULLAH I, DHUNA A Hemiageusia: an unusual presentation of multiple sclerosis.
J Neurol Neurosurg Psychiatry.
1991;
54
(7):657. doi: 10.1136/jnnp.54.7.657.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
66.
ONODA K, IKEDA M Gustatory disturbance due to cerebrovascular disorder.
Laryngoscope.
1999;
109
(1):123–128. doi: 10.1097/00005537-199901000-00024.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
67.
ROUSSEAUX M, MULLER P, GAHIDE I, et al Disorders of smell, taste, and food intake in a patient with a dorsomedial thalamic infarct.
Stroke.
1996;
27
(12):2328–2330. doi: 10.1161/01.str.27.12.2328.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
68.
SHAH M, DEEB J, FERNANDO M, et al Abnormality of taste and smell in Parkinson's disease.
Parkinsonism Relat Disord.
2009;
15
(3):232–237. doi: 10.1016/j.parkreldis.2008.05.008.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
69.
SCHIFFMAN S S, CLARK C M, WARWICK Z S Gustatory and olfactory dysfunction in dementia: not specific to Alzheimer's disease.
Neurobiol Aging.
1990;
11
(6):597–600. doi: 10.1016/0197-4580(90)90023-s.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
71.
CASTILLO-AZOFEIFA D, LOSACCO J T, SALCEDO E, et al Sonic hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.
Development.
2017;
144
(17):3054–3065. doi: 10.1242/dev.150342.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
72.
LU W J, MANN R K, NGUYEN A, et al Neuronal delivery of Hedgehog directs spatial patterning of taste organ regeneration.
Proc Natl Acad Sci U S A.
2018;
115
(2):E200–E209. doi: 10.1073/pnas.1719109115.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
73.
GUAGLIARDO N A, HILL D L Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.
J Comp Neurol.
2007;
504
(2):206–216. doi: 10.1002/cne.21436.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
74.
OAKLEY B, LAWTON A, RIDDLE D R, et al Morphometric and immunocytochemical assessment of fungiform taste buds after interruption of the chorda-lingual nerve.
Microsc Res Tech.
1993;
26
(3):187–195. doi: 10.1002/jemt.1070260302.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
75.
TORRES-FUENTES C, SCHELLEKENS H, DINAN T G, et al The microbiota-gut-brain axis in obesity.
Lancet Gastroenterol Hepatol.
2017;
2
(10):747–756. doi: 10.1016/S2468-1253(17)30147-4.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
76.
KIM B, KANAI M I, OH Y, et al Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit.
Nature.
2021;
593
(7860):570–574. doi: 10.1038/s41586-021-03522-2.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
77.
VASCELLARI S, MELIS M, COSSU G, et al Genetic variants of TAS2R38 bitter taste receptor associate with distinct gut microbiota traits in Parkinson's disease: a pilot study.
Int J Biol Macromol.
2020;
165
(Pt A):665–674. doi: 10.1016/j.ijbiomac.2020.09.056.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
79.
NAKAMURA Y, SANEMATSU K, OHTA R, et al Diurnal variation of human sweet taste recognition thresholds is correlated with plasma leptin levels.
Diabetes.
2008;
57
(10):2661–2665. doi: 10.2337/db07-1103.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
80.
SHIN Y K, MARTIN B, GOLDEN E, et al Modulation of taste sensitivity by GLP-1 signaling.
J Neurochem.
2008;
106
(1):455–463. doi: 10.1111/j.1471-4159.2008.05397.x.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
81.
YOSHIDA R, OHKURI T, JYOTAKI M, et al Endocannabinoids selectively enhance sweet taste.
Proc Natl Acad Sci U S A.
2010;
107
(2):935–939. doi: 10.1073/pnas.0912048107.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
82.
HERNESS S, ZHAO F L, LU S G, et al Expression and physiological actions of cholecystokinin in rat taste receptor cells.
J Neurosci.
2002;
22
(22):10018–10029. doi: 10.1523/JNEUROSCI.22-22-10018.2002.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
83.
HURTADO M D, ACOSTA A, RIVEROS P P, et al Distribution of Y-receptors in murine lingual epithelia.
PLoS One.
2012;
7
(9):e46358. doi: 10.1371/journal.pone.0046358.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
84.
SHIN Y K, MARTIN B, KIM W, et al Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants.
PLoS One.
2010;
5
(9):e12729. doi: 10.1371/journal.pone.0012729.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
85.
LARRAUFIE P, MARTIN-GALLAUSIAUX C, LAPAQUE N, et al SCFAs strongly stimulate PYY production in human enteroendocrine cells.
Sci Rep.
2018;
8
(1):74. doi: 10.1038/s41598-017-18259-0.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
86.
CHRISTIANSEN C B, GABE M B N, SVENDSEN B, et al The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon.
Am J Physiol Gastrointest Liver Physiol.
2018;
315
(1):G53–G65. doi: 10.1152/ajpgi.00346.2017.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
87.
DALILE B, Van OUDENHOVE L, VERVLIET B, et al The role of short-chain fatty acids in microbiota-gut-brain communication.
Nat Rev Gastroenterol Hepatol.
2019;
16
(8):461–478. doi: 10.1038/s41575-019-0157-3.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
88.
[No author] International Classification of Orofacial Pain, 1st edition (ICOP)
Cephalalgia.
2020;
40
(2):129–221. doi: 10.1177/0333102419893823.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
89.
NASRI-HEIR C, SHIGDAR D, ALNAAS D, et al Primary burning mouth syndrome: literature review and preliminary findings suggesting possible association with pain modulation.
Quintessence Int.
2017;
49
(1):49–60. doi: 10.3290/j.qi.a39403.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
90.
KHAN J, NOMA N, KALLADKA M. Taste changes in orofacial pain conditions and coronavirus disease 2019: a review. Front Oral Maxillofac Med, 2021, 3: 5. doi: 10.21037/fomm-20-68.
91.
SILVA C S, DIAS V R, ALMEIDA J A, et al Effect of heavy consumption of alcoholic beverages on the perception of sweet and salty taste.
Alcohol Alcohol.
2016;
51
(3):302–326. doi: 10.1093/alcalc/agv116.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
92.
RISSO D S, HOWARD L, VANWAES C, et al A potential trigger for pine mouth: a case of a homozygous phenylthiocarbamide taster.
Nutr Res.
2015;
35
(12):1122–1125. doi: 10.1016/j.nutres.2015.09.011.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
93.
BOSCOLO-RIZZO P, BORSETTO D, FABBRIS C, et al Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19.
JAMA Otolaryngol Head Neck Surg.
2020;
146
(8):729–732. doi: 10.1001/jamaoto.2020.1379.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
94.
CANON F, NEIERS F, GUICHARD E Saliva and flavor perception: perspectives.
J Agric Food Chem.
2018;
66
(30):7873–7879. doi: 10.1021/acs.jafc.8b01998.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
95.
CIFUENTES M, Del BARRIO-DÍAZ P, VERA-KELLET C Pilocarpine and artificial saliva for the treatment of xerostomia and xerophthalmia in Sjögren syndrome: a double-blind randomized controlled trial.
Br J Dermatol.
2018;
179
(5):1056–1061. doi: 10.1111/bjd.16442.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
96.
OSAKI T, OHSHIMA M, TOMITA Y, et al Clinical and physiological investigations in patients with taste abnormality.
J Oral Pathol Med.
1996;
25
(1):38–43. doi: 10.1111/j.1600-0714.1996.tb01221.x.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
97.
SINGH C V, JAIN S, PARVEEN S The outcome of fluticasone nasal spray on anosmia and triamcinolone oral paste in dysgeusia in COVID-19 patients.
Am J Otolaryngol.
2021;
42
(3):102892. doi: 10.1016/j.amjoto.2020.102892.
[
PMC free article
]
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
98.
MCCONNELL R J, MENENDEZ C E, SMITH F R, et al Defects of taste and smell in patients with hypothyroidism.
Am J Med.
1975;
59
(3):354–364. doi: 10.1016/0002-9343(75)90394-0.
[
PubMed
] [
CrossRef
]
[
Google Scholar
]
99.
罗冠宇, 李建强 味觉缺失案
中国针灸
2021;
41
(5):582. doi: 10.13703/j.0255-2930.20200601-k0004.
[
CrossRef
]
[
Google Scholar
]
100.
康健, 邵妍 眼针埋针疗法联合体针治疗急性期周围性面瘫味觉障碍临床疗效观察
辽宁中医药大学学报
2023;
25
(1):35–38. doi: 10.13194/j.issn.1673-842x.2023.01.008.
[
CrossRef
]
[
Google Scholar
]
101.
王兴丽, 杨向东, 张伟锋, 等 白血病化疗相关味觉改变的中医综合施治研究
湖北中医杂志
2021;
43
(12):53–55.
[
Google Scholar
]
102.
李宁, 白莉, 苗明三 基于数据挖掘的中药防范炎症因子过度表达致“炎症风暴”用药规律分析
中药药理与临床
2020;
36
(2):32–35.
[
Google Scholar
]
Articles from
Journal of Sichuan University (Medical Sciences)
are provided here courtesy of
Editorial Board of Journal of Sichuan University (Medical Sciences)