import matplotlib.pyplot as plt
import numpy as np
w, h = 4, 3
margin = 0.5
fig = plt.figure(figsize=(w, h), facecolor='lightblue')
ax = fig.add_axes([margin / w, margin / h, (w - 2 * margin) / w,
(h - 2 * margin) / h])
Basic 2x2 grid
We can create a basic 2-by-2 grid of Axes using
subplots
. It returns a Figure
instance and an array of Axes
objects. The Axes
objects can be used to access methods to place artists on the Axes; here
we use annotate
, but other examples could be plot
,
pcolormesh
, etc.
fig, axs = plt.subplots(ncols=
2, nrows=2, figsize=(5.5, 3.5),
layout="constrained")
# add an artist, in this case a nice label in the middle...
for row in range(2):
for col in range(2):
axs[row, col].annotate(f'axs[{row}, {col}]', (0.5, 0.5),
transform=axs[row, col].transAxes,
ha='center', va='center', fontsize=18,
color='darkgrey')
fig.suptitle('plt.subplots()')

We will annotate a lot of Axes, so let's encapsulate the annotation, rather
than having that large piece of annotation code every time we need it:
def annotate_axes(ax, text, fontsize=18):
ax.text(0.5, 0.5, text, transform=ax.transAxes,
ha="center", va="center", fontsize=fontsize, color="darkgrey")
The same effect can be achieved with subplot_mosaic
,
but the return type is a dictionary instead of an array, where the user
can give the keys useful meanings. Here we provide two lists, each list
representing a row, and each element in the list a key representing the
column.
fig, axd = plt.subplot_mosaic([['upper left', 'upper right'],
['lower left', 'lower right']],
figsize=(5.5, 3.5), layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')
Grids of fixed-aspect ratio Axes
Fixed-aspect ratio Axes are common for images or maps. However, they
present a challenge to layout because two sets of constraints are being
imposed on the size of the Axes - that they fit in the figure and that they
have a set aspect ratio. This leads to large gaps between Axes by default:
fig, axs = plt.subplots(2, 2, layout="constrained",
figsize=(5.5, 3.5), facecolor='lightblue')
for ax in axs.flat:
ax.set_aspect(1)
fig.suptitle('Fixed aspect Axes')

One way to address this is to change the aspect of the figure to be close
to the aspect ratio of the Axes, however that requires trial and error.
Matplotlib also supplies layout="compressed"
, which will work with
simple grids to reduce the gaps between Axes. (The mpl_toolkits
also
provides ImageGrid
to accomplish
a similar effect, but with a non-standard Axes class).
fig, axs = plt.subplots(2, 2, layout="compressed", figsize=(5.5, 3.5),
facecolor='lightblue')
for ax in axs.flat:
ax.set_aspect(1)
fig.suptitle('Fixed aspect Axes: compressed')
Axes spanning rows or columns in a grid
Sometimes we want Axes to span rows or columns of the grid.
There are actually multiple ways to accomplish this, but the most
convenient is probably to use subplot_mosaic
by repeating one
of the keys:
fig, axd = plt.subplot_mosaic([['upper left', 'right'],
['lower left', 'right']],
figsize=(5.5, 3.5), layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')

See below for the description of how to do the same thing using
GridSpec
or subplot2grid
.
Variable widths or heights in a grid
Both subplots
and subplot_mosaic
allow the rows
in the grid to be different heights, and the columns to be different
widths using the gridspec_kw keyword argument.
Spacing parameters accepted by GridSpec
can be passed to subplots
and
subplot_mosaic
:
gs_kw = dict(width_ratios=[1.4, 1], height_ratios=[1, 2])
fig, axd = plt.subplot_mosaic([['upper left', 'right'],
['lower left', 'right']],
gridspec_kw=gs_kw, figsize=(5.5, 3.5),
layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]', fontsize=14)
fig.suptitle('plt.subplot_mosaic()')
Nested Axes layouts
Sometimes it is helpful to have two or more grids of Axes that
may not need to be related to one another. The most simple way to
accomplish this is to use Figure.subfigures
. Note that the subfigure
layouts are independent, so the Axes spines in each subfigure are not
necessarily aligned. See below for a more verbose way to achieve the same
effect with GridSpecFromSubplotSpec
.
fig = plt.figure(layout="constrained")
subfigs = fig.subfigures(1, 2, wspace=0.07, width_ratios=[1.5, 1.])
axs0 = subfigs[0].subplots(2, 2)
subfigs[0].set_facecolor('lightblue')
subfigs[0].suptitle('subfigs[0]\nLeft side')
subfigs[0].supxlabel('xlabel for subfigs[0]')
axs1 = subfigs[1].subplots(3, 1)
subfigs[1].suptitle('subfigs[1]')
subfigs[1].supylabel('ylabel for subfigs[1]')

It is also possible to nest Axes using subplot_mosaic
using
nested lists. This method does not use subfigures, like above, so lacks
the ability to add per-subfigure suptitle
and supxlabel
, etc.
Rather it is a convenience wrapper around the subgridspec
method described below.
inner
= [['innerA'],
['innerB']]
outer = [['upper left', inner],
['lower left', 'lower right']]
fig, axd = plt.subplot_mosaic(outer, layout="constrained")
for k, ax in axd.items():
annotate_axes(ax, f'axd[{k!r}]')
Low-level and advanced grid methods
Internally, the arrangement of a grid of Axes is controlled by creating
instances of GridSpec
and SubplotSpec
. GridSpec defines a
(possibly non-uniform) grid of cells. Indexing into the GridSpec returns
a SubplotSpec that covers one or more grid cells, and can be used to
specify the location of an Axes.
The following examples show how to use low-level methods to arrange Axes
using GridSpec objects.
Basic 2x2 grid
We can accomplish a 2x2 grid in the same manner as
plt.subplots(2, 2)
:
fig = plt.figure(figsize=(5.5, 3.5), layout="constrained")
spec = fig.add_gridspec(ncols=2, nrows=2)
ax0 = fig.add_subplot(spec[0, 0])
annotate_axes(ax0, 'ax0')
ax1 = fig.add_subplot(spec[0, 1])
annotate_axes(ax1, 'ax1')
ax2 = fig.add_subplot(spec[1, 0])
annotate_axes(ax2, 'ax2')
ax3 = fig.add_subplot(spec[1, 1])
annotate_axes(ax3, 'ax3')
fig.suptitle('Manually added subplots using add_gridspec')
Axes spanning rows or grids in a grid
We can index the spec array using NumPy slice syntax
and the new Axes will span the slice. This would be the same
as fig, axd = plt.subplot_mosaic([['ax0', 'ax0'], ['ax1', 'ax2']], ...)
:
fig = plt.figure(figsize=(5.5, 3.5), layout="constrained")
spec = fig.add_gridspec(2, 2)
ax0 = fig.add_subplot(spec[0, :])
annotate_axes(ax0, 'ax0')
ax10 = fig.add_subplot(spec[1, 0])
annotate_axes(ax10, 'ax10')
ax11 = fig.add_subplot
(spec[1, 1])
annotate_axes(ax11, 'ax11')
fig.suptitle('Manually added subplots, spanning a column')
Manual adjustments to a GridSpec layout
When a GridSpec is explicitly used, you can adjust the layout
parameters of subplots that are created from the GridSpec. Note this
option is not compatible with constrained layout or
Figure.tight_layout
which both ignore left and right and adjust
subplot sizes to fill the figure. Usually such manual placement
requires iterations to make the Axes tick labels not overlap the Axes.
These spacing parameters can also be passed to subplots
and
subplot_mosaic
as the gridspec_kw argument.
fig = plt.figure(layout=None, facecolor='lightblue')
gs = fig.add_gridspec(nrows=3, ncols=3, left=0.05, right=0.75,
hspace=0.1, wspace=0.05)
ax0 = fig.add_subplot(gs[:-1, :])
annotate_axes(ax0, 'ax0')
ax1 = fig.add_subplot(gs[-1, :-1])
annotate_axes(ax1, 'ax1')
ax2 = fig.add_subplot(gs[-1, -1])
annotate_axes(ax2, 'ax2')
fig.suptitle('Manual gridspec with right=0.75')
Nested layouts with SubplotSpec
You can create nested layout similar to subfigures
using
subgridspec
. Here the Axes spines are
aligned.
Note this is also available from the more verbose
gridspec.GridSpecFromSubplotSpec
.
fig = plt.figure(layout="constrained")
gs0 = fig.add_gridspec(1, 2)
gs00 = gs0[0].subgridspec(2, 2)
gs01 = gs0[1].subgridspec(3, 1)
for a in range(2):
for b in range(2):
ax = fig.add_subplot(gs00[a, b])
annotate_axes(ax, f'axLeft[{a}, {b}]', fontsize=10)
if a == 1 and b == 1:
ax.set_xlabel('xlabel')
for a in range(3):
ax
= fig.add_subplot(gs01[a])
annotate_axes(ax, f'axRight[{a}, {b}]')
if a == 2:
ax.set_ylabel('ylabel')
fig.suptitle('nested gridspecs')

Here's a more sophisticated example of nested GridSpec: We create an outer
4x4 grid with each cell containing an inner 3x3 grid of Axes. We outline
the outer 4x4 grid by hiding appropriate spines in each of the inner 3x3
grids.
def squiggle_xy(a, b, c, d, i=np.arange(0.0, 2*np.pi, 0.05)):
return np.sin(i*a)*np.cos(i*b), np.sin(i*c)*np.cos(i*d)
fig = plt.figure(figsize=(8, 8), layout='constrained')
outer_grid = fig.add_gridspec(4, 4, wspace=0, hspace=0)
for a in range(4):
for b in range(4):
# gridspec inside gridspec
inner_grid = outer_grid[a, b].subgridspec(3, 3, wspace=0, hspace=0)
axs = inner_grid.subplots() # Create all subplots for the inner grid.
for (c, d), ax in np.ndenumerate(axs):
ax.plot(*squiggle_xy(a + 1, b + 1, c + 1, d + 1))
ax.set(xticks=[], yticks=[])
# show only the outside spines
for ax in fig.get_axes():
ss = ax.get_subplotspec()
ax.spines.top.set_visible(ss.is_first_row())
ax.spines.bottom.set_visible(ss.is_last_row())
ax.spines.left.set_visible(ss.is_first_col())
ax.spines.right.set_visible(ss.is_last_col())
plt.show()
More details about subplot mosaic.
More details about constrained layout, used to align
spacing in most of these examples.
References
The use of the following functions, methods, classes and modules is shown
in this example:
matplotlib.pyplot.subplots
matplotlib.pyplot.subplot_mosaic
matplotlib.figure.Figure.add_gridspec
matplotlib.figure.Figure.add_subplot
matplotlib.gridspec.GridSpec
matplotlib.gridspec.SubplotSpec.subgridspec
matplotlib.gridspec.GridSpecFromSubplotSpec
Total running time of the script: (0 minutes 13.993 seconds)
Download Jupyter notebook: arranging_axes.ipynb
Download Python source code: arranging_axes.py
Download zipped: arranging_axes.zip
Gallery generated by Sphinx-Gallery
Grids of fixed-aspect ratio Axes
Axes spanning rows or columns in a grid
Variable widths or heights in a grid
Nested Axes layouts
Low-level and advanced grid methods