添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

" Fossies " - the Fresh Open Source Software Archive

Member "opencv-4.8.1/modules/imgproc/include/opencv2/imgproc.hpp" (27 Sep 2023, 246695 Bytes) of package / linux / misc / opencv-4.8.1.tar.gz :

As a special service "Fossies" has tried to format the requested source page into HTML format using (guessed) C and C++ source code syntax highlighting (style: standard ) with prefixed line numbers and code folding option. Alternatively you can here view or download the uninterpreted source code file. For more information about "imgproc.hpp" see the Fossies "Dox" file reference documentation and the last Fossies "Diffs" side-by-side code changes report: 4.7.0_vs_4.8.0 .

A hint: This file contains one or more very long lines, so maybe it is better readable using the pure text view mode that shows the contents as wrapped lines within the browser window.

    1 /*M///////////////////////////////////////////////////////////////////////////////////////
    3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
    5 //  By downloading, copying, installing or using the software you agree to this license.
    6 //  If you do not agree to this license, do not download, install,
    7 //  copy or use the software.
   10 //                           License Agreement
   11 //                For Open Source Computer Vision Library
   12 //
   15 // Third party copyrights are property of their respective owners.
   16 //
   17 // Redistribution and use in source and binary forms, with or without modification,
   18 // are permitted provided that the following conditions are met:
   19 //
   20 //   * Redistribution's of source code must retain the above copyright notice,
   21 //     this list of conditions and the following disclaimer.
   22 //
   23 //   * Redistribution's in binary form must reproduce the above copyright notice,
   24 //     this list of conditions and the following disclaimer in the documentation
   25 //     and/or other materials provided with the distribution.
   26 //
   27 //   * The name of the copyright holders may not be used to endorse or promote products
   28 //     derived from this software without specific prior written permission.
   29 //
   30 // This software is provided by the copyright holders and contributors "as is" and
   31 // any express or implied warranties, including, but not limited to, the implied
   32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
   33 // In no event shall the Intel Corporation or contributors be liable for any direct,
   34 // indirect, incidental, special, exemplary, or consequential damages
   35 // (including, but not limited to, procurement of substitute goods or services;
   36 // loss of use, data, or profits; or business interruption) however caused
   37 // and on any theory of liability, whether in contract, strict liability,
   38 // or tort (including negligence or otherwise) arising in any way out of
   39 // the use of this software, even if advised of the possibility of such damage.
   40 //
   41 //M*/
   43 #ifndef OPENCV_IMGPROC_HPP
   44 #define OPENCV_IMGPROC_HPP
   46 #include "opencv2/core.hpp"
   48 /**
   49   @defgroup imgproc Image Processing
   51 This module includes image-processing functions.
   53   @{
   54     @defgroup imgproc_filter Image Filtering
   56 Functions and classes described in this section are used to perform various linear or non-linear
   57 filtering operations on 2D images (represented as Mat's). It means that for each pixel location
   58 \f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to
   59 compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of
   60 morphological operations, it is the minimum or maximum values, and so on. The computed response is
   61 stored in the destination image at the same location \f$(x,y)\f$. It means that the output image
   62 will be of the same size as the input image. Normally, the functions support multi-channel arrays,
   63 in which case every channel is processed independently. Therefore, the output image will also have
   64 the same number of channels as the input one.
   66 Another common feature of the functions and classes described in this section is that, unlike
   67 simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For
   68 example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when
   69 processing the left-most pixels in each row, you need pixels to the left of them, that is, outside
   70 of the image. You can let these pixels be the same as the left-most image pixels ("replicated
   71 border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant
   72 border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method.
   73 For details, see #BorderTypes
   75 @anchor filter_depths
   76 ### Depth combinations
   77 Input depth (src.depth()) | Output depth (ddepth)
   78 --------------------------|----------------------
   79 CV_8U                     | -1/CV_16S/CV_32F/CV_64F
   80 CV_16U/CV_16S             | -1/CV_32F/CV_64F
   81 CV_32F                    | -1/CV_32F
   82 CV_64F                    | -1/CV_64F
   84 @note when ddepth=-1, the output image will have the same depth as the source.
   86 @note if you need double floating-point accuracy and using single floating-point input data
   87 (CV_32F input and CV_64F output depth combination), you can use @ref Mat.convertTo to convert
   88 the input data to the desired precision.
   90     @defgroup imgproc_transform Geometric Image Transformations
   92 The functions in this section perform various geometrical transformations of 2D images. They do not
   93 change the image content but deform the pixel grid and map this deformed grid to the destination
   94 image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from
   95 destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the
   96 functions compute coordinates of the corresponding "donor" pixel in the source image and copy the
   97 pixel value:
   99 \f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f]
  101 In case when you specify the forward mapping \f$\left<g_x, g_y\right>: \texttt{src} \rightarrow
  102 \texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping
  103 \f$\left<f_x, f_y\right>: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula.
  105 The actual implementations of the geometrical transformations, from the most generic remap and to
  106 the simplest and the fastest resize, need to solve two main problems with the above formula:
  108 - Extrapolation of non-existing pixels. Similarly to the filtering functions described in the
  109 previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both
  110 of them may fall outside of the image. In this case, an extrapolation method needs to be used.
  111 OpenCV provides the same selection of extrapolation methods as in the filtering functions. In
  112 addition, it provides the method #BORDER_TRANSPARENT. This means that the corresponding pixels in
  113 the destination image will not be modified at all.
  115 - Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point
  116 numbers. This means that \f$\left<f_x, f_y\right>\f$ can be either an affine or perspective
  117 transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional
  118 coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the
  119 nearest integer coordinates and the corresponding pixel can be used. This is called a
  120 nearest-neighbor interpolation. However, a better result can be achieved by using more
  121 sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) ,
  122 where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y),
  123 f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the
  124 interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See
  125 #resize for details.
  127 @note The geometrical transformations do not work with `CV_8S` or `CV_32S` images.
  129     @defgroup imgproc_misc Miscellaneous Image Transformations
  130     @defgroup imgproc_draw Drawing Functions
  132 Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be
  133 rendered with antialiasing (implemented only for 8-bit images for now). All the functions include
  134 the parameter color that uses an RGB value (that may be constructed with the Scalar constructor )
  135 for color images and brightness for grayscale images. For color images, the channel ordering is
  136 normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a
  137 color using the Scalar constructor, it should look like:
  139 \f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f]
  141 If you are using your own image rendering and I/O functions, you can use any channel ordering. The
  142 drawing functions process each channel independently and do not depend on the channel order or even
  143 on the used color space. The whole image can be converted from BGR to RGB or to a different color
  144 space using cvtColor .
  146 If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also,
  147 many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means
  148 that the coordinates can be passed as fixed-point numbers encoded as integers. The number of
  149 fractional bits is specified by the shift parameter and the real point coordinates are calculated as
  150 \f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is
  151 especially effective when rendering antialiased shapes.
  153 @note The functions do not support alpha-transparency when the target image is 4-channel. In this
  154 case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint
  155 semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main
  156 image.
  158     @defgroup imgproc_color_conversions Color Space Conversions
  159     @defgroup imgproc_colormap ColorMaps in OpenCV
  161 The human perception isn't built for observing fine changes in grayscale images. Human eyes are more
  162 sensitive to observing changes between colors, so you often need to recolor your grayscale images to
  163 get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your
  164 computer vision application.
  166 In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample
  167 code reads the path to an image from command line, applies a Jet colormap on it and shows the
  168 result:
  170 @include snippets/imgproc_applyColorMap.cpp
  172 @see #ColormapTypes
  174     @defgroup imgproc_subdiv2d Planar Subdivision
  176 The Subdiv2D class described in this section is used to perform various planar subdivision on
  177 a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
  178 using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
  179 In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
  180 diagram with red lines.
  182 ![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
  184 The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast
  185 location of points on the plane, building special graphs (such as NNG,RNG), and so forth.
  187     @defgroup imgproc_hist Histograms
  188     @defgroup imgproc_shape Structural Analysis and Shape Descriptors
  189     @defgroup imgproc_motion Motion Analysis and Object Tracking
  190     @defgroup imgproc_feature Feature Detection
  191     @defgroup imgproc_object Object Detection
  192     @defgroup imgproc_segmentation Image Segmentation
  193     @defgroup imgproc_c C API
  194     @defgroup imgproc_hal Hardware Acceleration Layer
  195     @{
  196         @defgroup imgproc_hal_functions Functions
  197         @defgroup imgproc_hal_interface Interface
  198     @}
  199   @}
  200 */
  202 namespace cv
  203  {
  205 /** @addtogroup imgproc
  206 @{
  207 */
  209 //! @addtogroup imgproc_filter
  210 //! @{
  212 enum SpecialFilter  {
  213     FILTER_SCHARR = -1
  214  };
  216 //! type of morphological operation
  217 enum MorphTypes {
  218     MORPH_ERODE    = 0, //!< see #erode
  219     MORPH_DILATE   = 1, //!< see #dilate
  220     MORPH_OPEN     = 2, //!< an opening operation
  221                         //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f]
  222     MORPH_CLOSE    = 3, //!< a closing operation
  223                         //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f]
  224     MORPH_GRADIENT = 4, //!< a morphological gradient
  225                         //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f]
  226     MORPH_TOPHAT   = 5, //!< "top hat"
  227                         //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f]
  228     MORPH_BLACKHAT = 6, //!< "black hat"
  229                         //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f]
  230     MORPH_HITMISS  = 7  //!< "hit or miss"
  231                         //!<   .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation
  232  };
  234 //! shape of the structuring element
  235 enum MorphShapes  {
  236     MORPH_RECT    = 0, //!< a rectangular structuring element:  \f[E_{ij}=1\f]
  237     MORPH_CROSS   = 1, //!< a cross-shaped structuring element:
  238                        //!< \f[E_{ij} = \begin{cases} 1 & \texttt{if } {i=\texttt{anchor.y } {or } {j=\texttt{anchor.x}}} \\0 & \texttt{otherwise} \end{cases}\f]
  239     MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed
  240                       //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height)
  241  };
  243 //! @} imgproc_filter
  245 //! @addtogroup imgproc_transform
  246 //! @{
  248 //! interpolation algorithm
  249 enum InterpolationFlags {
  250     /** nearest neighbor interpolation */
  251     INTER_NEAREST        = 0,
  252     /** bilinear interpolation */
  253     INTER_LINEAR         = 1,
  254     /** bicubic interpolation */
  255     INTER_CUBIC          = 2,
  256     /** resampling using pixel area relation. It may be a preferred method for image decimation, as
  257     it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST
  258     method. */
  259     INTER_AREA           = 3,
  260     /** Lanczos interpolation over 8x8 neighborhood */
  261     INTER_LANCZOS4       = 4,
  262     /** Bit exact bilinear interpolation */
  263     INTER_LINEAR_EXACT = 5,
  264     /** Bit exact nearest neighbor interpolation. This will produce same results as
  265     the nearest neighbor method in PIL, scikit-image or Matlab. */
  266     INTER_NEAREST_EXACT  = 6,
  267     /** mask for interpolation codes */
  268     INTER_MAX            = 7,
  269     /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the
  270     source image, they are set to zero */
  271     WARP_FILL_OUTLIERS   = 8,
  272     /** flag, inverse transformation
  274     For example, #linearPolar or #logPolar transforms:
  275     - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$
  276     - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$
  277     */
  278     WARP_INVERSE_MAP     = 16
  279  };
  281 /** \brief Specify the polar mapping mode
  282 @sa warpPolar
  283 */
  284 enum WarpPolarMode
  285  {
  286     WARP_POLAR_LINEAR = 0, ///< Remaps an image to/from polar space.
  287     WARP_POLAR_LOG = 256   ///< Remaps an image to/from semilog-polar space.
  288  };
  290 enum InterpolationMasks  {
  291        INTER_BITS      = 5,
  292        INTER_BITS2     = INTER_BITS * 2,
  293        INTER_TAB_SIZE  = 1 << INTER_BITS,
  294        INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
  295       };
  297 //! @} imgproc_transform
  299 //! @addtogroup imgproc_misc
  300 //! @{
  302 //! Distance types for Distance Transform and M-estimators
  303 //! @see distanceTransform, fitLine
  304 enum DistanceTypes  {
  305     DIST_USER    = -1,  //!< User defined distance
  306     DIST_L1      = 1,   //!< distance = |x1-x2| + |y1-y2|
  307     DIST_L2      = 2,   //!< the simple euclidean distance
  308     DIST_C       = 3,   //!< distance = max(|x1-x2|,|y1-y2|)
  309     DIST_L12     = 4,   //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
  310     DIST_FAIR    = 5,   //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998
  311     DIST_WELSCH  = 6,   //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846
  312     DIST_HUBER   = 7    //!< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345
  313  };
  315 //! Mask size for distance transform
  316 enum DistanceTransformMasks  {
  317     DIST_MASK_3       = 3, //!< mask=3
  318     DIST_MASK_5       = 5, //!< mask=5
  319     DIST_MASK_PRECISE = 0  //!<
  320  };
  322 //! type of the threshold operation
  323 //! ![threshold types](pics/threshold.png)
  324 enum ThresholdTypes  {
  325     THRESH_BINARY     = 0, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{maxval}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
  326     THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f]
  327     THRESH_TRUNC      = 2, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
  328     THRESH_TOZERO     = 3, //!< \f[\texttt{dst} (x,y) =  \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f]
  329     THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) =  \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f]
  330     THRESH_MASK       = 7,
  331     THRESH_OTSU       = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value
  332     THRESH_TRIANGLE   = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value
  333  };
  335 //! adaptive threshold algorithm
  336 //! @see adaptiveThreshold
  337 enum AdaptiveThresholdTypes  {
  338     /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times
  339     \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */
  340     ADAPTIVE_THRESH_MEAN_C     = 0,
  341     /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian
  342     window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$
  343     minus C . The default sigma (standard deviation) is used for the specified blockSize . See
  344     #getGaussianKernel*/
  345     ADAPTIVE_THRESH_GAUSSIAN_C = 1
  346  };
  348 //! class of the pixel in GrabCut algorithm
  349 enum GrabCutClasses  {
  350     GC_BGD    = 0,  //!< an obvious background pixels
  351     GC_FGD    = 1,  //!< an obvious foreground (object) pixel
  352     GC_PR_BGD = 2,  //!< a possible background pixel
  353     GC_PR_FGD = 3   //!< a possible foreground pixel
  354  };
  356 //! GrabCut algorithm flags
  357 enum GrabCutModes  {
  358     /** The function initializes the state and the mask using the provided rectangle. After that it
  359     runs iterCount iterations of the algorithm. */
  360     GC_INIT_WITH_RECT  = 0,
  361     /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT
  362     and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are
  363     automatically initialized with GC_BGD .*/
  364     GC_INIT_WITH_MASK  = 1,
  365     /** The value means that the algorithm should just resume. */
  366     GC_EVAL            = 2,
  367     /** The value means that the algorithm should just run the grabCut algorithm (a single iteration) with the fixed model */
  368     GC_EVAL_FREEZE_MODEL = 3
  369  };
  371 //! distanceTransform algorithm flags
  372 enum DistanceTransformLabelTypes  {
  373     /** each connected component of zeros in src (as well as all the non-zero pixels closest to the
  374     connected component) will be assigned the same label */
  375     DIST_LABEL_CCOMP = 0,
  376     /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */
  377     DIST_LABEL_PIXEL = 1
  378  };
  380 //! floodfill algorithm flags
  381 enum FloodFillFlags  {
  382     /** If set, the difference between the current pixel and seed pixel is considered. Otherwise,
  383     the difference between neighbor pixels is considered (that is, the range is floating). */
  384     FLOODFILL_FIXED_RANGE = 1 << 16,
  385     /** If set, the function does not change the image ( newVal is ignored), and only fills the
  386     mask with the value specified in bits 8-16 of flags as described above. This option only make
  387     sense in function variants that have the mask parameter. */
  388     FLOODFILL_MASK_ONLY   = 1 << 17
  389  };
  391 //! @} imgproc_misc
  393 //! @addtogroup imgproc_shape
  394 //! @{
  396 //! connected components statistics
  397 enum ConnectedComponentsTypes  {
  398     CC_STAT_LEFT   = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding
  399                         //!< box in the horizontal direction.
  400     CC_STAT_TOP    = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding
  401                         //!< box in the vertical direction.
  402     CC_STAT_WIDTH  = 2, //!< The horizontal size of the bounding box
  403     CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box
  404     CC_STAT_AREA   = 4, //!< The total area (in pixels) of the connected component
  405 #ifndef CV_DOXYGEN
  406     CC_STAT_MAX    = 5 //!< Max enumeration value. Used internally only for memory allocation
  407 #endif
  408  };
  410 //! connected components algorithm
  411 enum ConnectedComponentsAlgorithmsTypes  {
  412     CCL_DEFAULT   = -1, //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity.
  413     CCL_WU        = 0,  //!< SAUF @cite Wu2009 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for SAUF.
  414     CCL_GRANA     = 1,  //!< BBDT @cite Grana2010 algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both BBDT and SAUF.
  415     CCL_BOLELLI   = 2,  //!< Spaghetti @cite Bolelli2019 algorithm for 8-way connectivity, Spaghetti4C @cite Bolelli2021 algorithm for 4-way connectivity. The parallel implementation described in @cite Bolelli2017 is available for both Spaghetti and Spaghetti4C.
  416     CCL_SAUF      = 3,  //!< Same as CCL_WU. It is preferable to use the flag with the name of the algorithm (CCL_SAUF) rather than the one with the name of the first author (CCL_WU).
  417     CCL_BBDT      = 4,  //!< Same as CCL_GRANA. It is preferable to use the flag with the name of the algorithm (CCL_BBDT) rather than the one with the name of the first author (CCL_GRANA).
  418     CCL_SPAGHETTI = 5,  //!< Same as CCL_BOLELLI. It is preferable to use the flag with the name of the algorithm (CCL_SPAGHETTI) rather than the one with the name of the first author (CCL_BOLELLI).
  419  };
  421 //! mode of the contour retrieval algorithm
  422 enum RetrievalModes  {
  423     /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for
  424     all the contours. */
  425     RETR_EXTERNAL  = 0,
  426     /** retrieves all of the contours without establishing any hierarchical relationships. */
  427     RETR_LIST      = 1,
  428     /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top
  429     level, there are external boundaries of the components. At the second level, there are
  430     boundaries of the holes. If there is another contour inside a hole of a connected component, it
  431     is still put at the top level. */
  432     RETR_CCOMP     = 2,
  433     /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/
  434     RETR_TREE      = 3,
  435     RETR_FLOODFILL = 4 //!<
  436  };
  438 //! the contour approximation algorithm
  439 enum ContourApproximationModes  {
  440     /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and
  441     (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is,
  442     max(abs(x1-x2),abs(y2-y1))==1. */
  443     CHAIN_APPROX_NONE      = 1,
  444     /** compresses horizontal, vertical, and diagonal segments and leaves only their end points.
  445     For example, an up-right rectangular contour is encoded with 4 points. */
  446     CHAIN_APPROX_SIMPLE    = 2,
  447     /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
  448     CHAIN_APPROX_TC89_L1   = 3,
  449     /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */
  450     CHAIN_APPROX_TC89_KCOS = 4
  451  };
  453 /** @brief Shape matching methods
  455 \f$A\f$ denotes object1,\f$B\f$ denotes object2
  457 \f$\begin{array}{l} m^A_i =  \mathrm{sign} (h^A_i)  \cdot \log{h^A_i} \\ m^B_i =  \mathrm{sign} (h^B_i)  \cdot \log{h^B_i} \end{array}\f$
  459 and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively.
  460 */
  461 enum ShapeMatchModes  {
  462     CONTOURS_MATCH_I1  =1, //!< \f[I_1(A,B) =  \sum _{i=1...7}  \left |  \frac{1}{m^A_i} -  \frac{1}{m^B_i} \right |\f]
  463     CONTOURS_MATCH_I2  =2, //!< \f[I_2(A,B) =  \sum _{i=1...7}  \left | m^A_i - m^B_i  \right |\f]
  464     CONTOURS_MATCH_I3  =3  //!< \f[I_3(A,B) =  \max _{i=1...7}  \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
  465  };
  467 //! @} imgproc_shape
  469 //! @addtogroup imgproc_feature
  470 //! @{
  472 //! Variants of a Hough transform
  473 enum HoughModes  {
  475     /** classical or standard Hough transform. Every line is represented by two floating-point
  476     numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line,
  477     and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must
  478     be (the created sequence will be) of CV_32FC2 type */
  479     HOUGH_STANDARD      = 0,
  480     /** probabilistic Hough transform (more efficient in case if the picture contains a few long
  481     linear segments). It returns line segments rather than the whole line. Each segment is
  482     represented by starting and ending points, and the matrix must be (the created sequence will
  483     be) of the CV_32SC4 type. */
  484     HOUGH_PROBABILISTIC = 1,
  485     /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as
  486     HOUGH_STANDARD. */
  487     HOUGH_MULTI_SCALE   = 2,
  488     HOUGH_GRADIENT      = 3, //!< basically *21HT*, described in @cite Yuen90
  489     HOUGH_GRADIENT_ALT  = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
  490  };
  492 //! Variants of Line Segment %Detector
  493 enum LineSegmentDetectorModes  {
  494     LSD_REFINE_NONE = 0, //!< No refinement applied
  495     LSD_REFINE_STD  = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
  496     LSD_REFINE_ADV  = 2  //!< Advanced refinement. Number of false alarms is calculated, lines are
  497                          //!< refined through increase of precision, decrement in size, etc.
  498  };
  500 //! @} imgproc_feature
  502 /** Histogram comparison methods
  503   @ingroup imgproc_hist
  504 */
  505 enum HistCompMethods  {
  506     /** Correlation
  507     \f[d(H_1,H_2) =  \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f]
  508     where
  509     \f[\bar{H_k} =  \frac{1}{N} \sum _J H_k(J)\f]
  510     and \f$N\f$ is a total number of histogram bins. */
  511     HISTCMP_CORREL        = 0,
  512     /** Chi-Square
  513     \f[d(H_1,H_2) =  \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */
  514     HISTCMP_CHISQR        = 1,
  515     /** Intersection
  516     \f[d(H_1,H_2) =  \sum _I  \min (H_1(I), H_2(I))\f] */
  517     HISTCMP_INTERSECT     = 2,
  518     /** Bhattacharyya distance
  519     (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.)
  520     \f[d(H_1,H_2) =  \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */
  521     HISTCMP_BHATTACHARYYA = 3,
  522     HISTCMP_HELLINGER     = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA
  523     /** Alternative Chi-Square
  524     \f[d(H_1,H_2) =  2 * \sum _I  \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f]
  525     This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */
  526     HISTCMP_CHISQR_ALT    = 4,
  527     /** Kullback-Leibler divergence
  528     \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */
  529     HISTCMP_KL_DIV        = 5
  530  };
  532 /** the color conversion codes
  533 @see @ref imgproc_color_conversions
  534 @ingroup imgproc_color_conversions
  535  */
  536 enum ColorConversionCodes  {
  537     COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
  538     COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
  540     COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
  541     COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
  543     COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
  544     COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
  546     COLOR_RGBA2BGR     = 3,
  547     COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
  549     COLOR_BGR2RGB      = 4,
  550     COLOR_RGB2BGR      = COLOR_BGR2RGB,
  552     COLOR_BGRA2RGBA    = 5,
  553     COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
  555     COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
  556     COLOR_RGB2GRAY     = 7,
  557     COLOR_GRAY2BGR     = 8,
  558     COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
  559     COLOR_GRAY2BGRA    = 9,
  560     COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
  561     COLOR_BGRA2GRAY    = 10,
  562     COLOR_RGBA2GRAY    = 11,
  564     COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
  565     COLOR_RGB2BGR565   = 13,
  566     COLOR_BGR5652BGR   = 14,
  567     COLOR_BGR5652RGB   = 15,
  568     COLOR_BGRA2BGR565  = 16,
  569     COLOR_RGBA2BGR565  = 17,
  570     COLOR_BGR5652BGRA  = 18,
  571     COLOR_BGR5652RGBA  = 19,
  573     COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
  574     COLOR_BGR5652GRAY  = 21,
  576     COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
  577     COLOR_RGB2BGR555   = 23,
  578     COLOR_BGR5552BGR   = 24,
  579     COLOR_BGR5552RGB   = 25,
  580     COLOR_BGRA2BGR555  = 26,
  581     COLOR_RGBA2BGR555  = 27,
  582     COLOR_BGR5552BGRA  = 28,
  583     COLOR_BGR5552RGBA  = 29,
  585     COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
  586     COLOR_BGR5552GRAY  = 31,
  588     COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
  589     COLOR_RGB2XYZ      = 33,
  590     COLOR_XYZ2BGR      = 34,
  591     COLOR_XYZ2RGB      = 35,
  593     COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
  594     COLOR_RGB2YCrCb    = 37,
  595     COLOR_YCrCb2BGR    = 38,
  596     COLOR_YCrCb2RGB    = 39,
  598     COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
  599     COLOR_RGB2HSV      = 41,
  601     COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
  602     COLOR_RGB2Lab      = 45,
  604     COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
  605     COLOR_RGB2Luv      = 51,
  606     COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..180 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
  607     COLOR_RGB2HLS      = 53,
  609     COLOR_HSV2BGR      = 54, //!< backward conversions HSV to RGB/BGR with H range 0..180 if 8 bit image
  610     COLOR_HSV2RGB      = 55,
  612     COLOR_Lab2BGR      = 56,
  613     COLOR_Lab2RGB      = 57,
  614     COLOR_Luv2BGR      = 58,
  615     COLOR_Luv2RGB      = 59,
  616     COLOR_HLS2BGR      = 60, //!< backward conversions HLS to RGB/BGR with H range 0..180 if 8 bit image
  617     COLOR_HLS2RGB      = 61,
  619     COLOR_BGR2HSV_FULL = 66, //!< convert RGB/BGR to HSV (hue saturation value) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hsv "color conversions"
  620     COLOR_RGB2HSV_FULL = 67,
  621     COLOR_BGR2HLS_FULL = 68, //!< convert RGB/BGR to HLS (hue lightness saturation) with H range 0..255 if 8 bit image, @ref color_convert_rgb_hls "color conversions"
  622     COLOR_RGB2HLS_FULL = 69,
  624     COLOR_HSV2BGR_FULL = 70, //!< backward conversions HSV to RGB/BGR with H range 0..255 if 8 bit image
  625     COLOR_HSV2RGB_FULL = 71,
  626     COLOR_HLS2BGR_FULL = 72, //!< backward conversions HLS to RGB/BGR with H range 0..255 if 8 bit image
  627     COLOR_HLS2RGB_FULL = 73,
  629     COLOR_LBGR2Lab     = 74,
  630     COLOR_LRGB2Lab     = 75,
  631     COLOR_LBGR2Luv     = 76,
  632     COLOR_LRGB2Luv     = 77,
  634     COLOR_Lab2LBGR     = 78,
  635     COLOR_Lab2LRGB     = 79,
  636     COLOR_Luv2LBGR     = 80,
  637     COLOR_Luv2LRGB     = 81,
  639     COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
  640     COLOR_RGB2YUV      = 83,
  641     COLOR_YUV2BGR      = 84,
  642     COLOR_YUV2RGB      = 85,
  644     //! YUV 4:2:0 family to RGB
  645     COLOR_YUV2RGB_NV12  = 90,
  646     COLOR_YUV2BGR_NV12  = 91,
  647     COLOR_YUV2RGB_NV21  = 92,
  648     COLOR_YUV2BGR_NV21  = 93,
  649     COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21,
  650     COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21,
  652     COLOR_YUV2RGBA_NV12 = 94,
  653     COLOR_YUV2BGRA_NV12 = 95,
  654     COLOR_YUV2RGBA_NV21 = 96,
  655     COLOR_YUV2BGRA_NV21 = 97,
  656     COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
  657     COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
  659     COLOR_YUV2RGB_YV12  = 98,
  660     COLOR_YUV2BGR_YV12  = 99,
  661     COLOR_YUV2RGB_IYUV  = 100,
  662     COLOR_YUV2BGR_IYUV  = 101,
  663     COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV,
  664     COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV,
  665     COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12,
  666     COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12,
  668     COLOR_YUV2RGBA_YV12 = 102,
  669     COLOR_YUV2BGRA_YV12 = 103,
  670     COLOR_YUV2RGBA_IYUV = 104,
  671     COLOR_YUV2BGRA_IYUV = 105,
  672     COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
  673     COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
  674     COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12,
  675     COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12,
  677     COLOR_YUV2GRAY_420  = 106,
  678     COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
  679     COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
  680     COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
  681     COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
  682     COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
  683     COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
  684     COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420,
  686     //! YUV 4:2:2 family to RGB
  687     COLOR_YUV2RGB_UYVY = 107,
  688     COLOR_YUV2BGR_UYVY = 108,
  689     //COLOR_YUV2RGB_VYUY = 109,
  690     //COLOR_YUV2BGR_VYUY = 110,
  691     COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
  692     COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
  693     COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
  694     COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
  696     COLOR_YUV2RGBA_UYVY = 111,
  697     COLOR_YUV2BGRA_UYVY = 112,
  698     //COLOR_YUV2RGBA_VYUY = 113,
  699     //COLOR_YUV2BGRA_VYUY = 114,
  700     COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
  701     COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
  702     COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
  703     COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
  705     COLOR_YUV2RGB_YUY2 = 115,
  706     COLOR_YUV2BGR_YUY2 = 116,
  707     COLOR_YUV2RGB_YVYU = 117,
  708     COLOR_YUV2BGR_YVYU = 118,
  709     COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
  710     COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
  711     COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
  712     COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
  714     COLOR_YUV2RGBA_YUY2 = 119,
  715     COLOR_YUV2BGRA_YUY2 = 120,
  716     COLOR_YUV2RGBA_YVYU = 121,
  717     COLOR_YUV2BGRA_YVYU = 122,
  718     COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
  719     COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
  720     COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
  721     COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
  723     COLOR_YUV2GRAY_UYVY = 123,
  724     COLOR_YUV2GRAY_YUY2 = 124,
  725     //CV_YUV2GRAY_VYUY    = CV_YUV2GRAY_UYVY,
  726     COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
  727     COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
  728     COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
  729     COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
  730     COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
  732     //! alpha premultiplication
  733     COLOR_RGBA2mRGBA    = 125,
  734     COLOR_mRGBA2RGBA    = 126,
  736     //! RGB to YUV 4:2:0 family
  737     COLOR_RGB2YUV_I420  = 127,
  738     COLOR_BGR2YUV_I420  = 128,
  739     COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420,
  740     COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420,
  742     COLOR_RGBA2YUV_I420 = 129,
  743     COLOR_BGRA2YUV_I420 = 130,
  744     COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
  745     COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
  746     COLOR_RGB2YUV_YV12  = 131,
  747     COLOR_BGR2YUV_YV12  = 132,
  748     COLOR_RGBA2YUV_YV12 = 133,
  749     COLOR_BGRA2YUV_YV12 = 134,
  751     //! Demosaicing, see @ref color_convert_bayer "color conversions" for additional information
  752     COLOR_BayerBG2BGR = 46, //!< equivalent to RGGB Bayer pattern
  753     COLOR_BayerGB2BGR = 47, //!< equivalent to GRBG Bayer pattern
  754     COLOR_BayerRG2BGR = 48, //!< equivalent to BGGR Bayer pattern
  755     COLOR_BayerGR2BGR = 49, //!< equivalent to GBRG Bayer pattern
  757     COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
  758     COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
  759     COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
  760     COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
  762     COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
  763     COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
  764     COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
  765     COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
  767     COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, //!< equivalent to RGGB Bayer pattern
  768     COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, //!< equivalent to GRBG Bayer pattern
  769     COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, //!< equivalent to BGGR Bayer pattern
  770     COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, //!< equivalent to GBRG Bayer pattern
  772     COLOR_BayerBG2GRAY = 86, //!< equivalent to RGGB Bayer pattern
  773     COLOR_BayerGB2GRAY = 87, //!< equivalent to GRBG Bayer pattern
  774     COLOR_BayerRG2GRAY = 88, //!< equivalent to BGGR Bayer pattern
  775     COLOR_BayerGR2GRAY = 89, //!< equivalent to GBRG Bayer pattern
  777     COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
  778     COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
  779     COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
  780     COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
  782     //! Demosaicing using Variable Number of Gradients
  783     COLOR_BayerBG2BGR_VNG = 62, //!< equivalent to RGGB Bayer pattern
  784     COLOR_BayerGB2BGR_VNG = 63, //!< equivalent to GRBG Bayer pattern
  785     COLOR_BayerRG2BGR_VNG = 64, //!< equivalent to BGGR Bayer pattern
  786     COLOR_BayerGR2BGR_VNG = 65, //!< equivalent to GBRG Bayer pattern
  788     COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
  789     COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
  790     COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
  791     COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
  793     COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
  794     COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
  795     COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
  796     COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
  798     COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, //!< equivalent to RGGB Bayer pattern
  799     COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, //!< equivalent to GRBG Bayer pattern
  800     COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, //!< equivalent to BGGR Bayer pattern
  801     COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, //!< equivalent to GBRG Bayer pattern
  803     //! Edge-Aware Demosaicing
  804     COLOR_BayerBG2BGR_EA  = 135, //!< equivalent to RGGB Bayer pattern
  805     COLOR_BayerGB2BGR_EA  = 136, //!< equivalent to GRBG Bayer pattern
  806     COLOR_BayerRG2BGR_EA  = 137, //!< equivalent to BGGR Bayer pattern
  807     COLOR_BayerGR2BGR_EA  = 138, //!< equivalent to GBRG Bayer pattern
  809     COLOR_BayerRGGB2BGR_EA  = COLOR_BayerBG2BGR_EA,
  810     COLOR_BayerGRBG2BGR_EA  = COLOR_BayerGB2BGR_EA,
  811     COLOR_BayerBGGR2BGR_EA  = COLOR_BayerRG2BGR_EA,
  812     COLOR_BayerGBRG2BGR_EA  = COLOR_BayerGR2BGR_EA,
  814     COLOR_BayerRGGB2RGB_EA  = COLOR_BayerBGGR2BGR_EA,
  815     COLOR_BayerGRBG2RGB_EA  = COLOR_BayerGBRG2BGR_EA,
  816     COLOR_BayerBGGR2RGB_EA  = COLOR_BayerRGGB2BGR_EA,
  817     COLOR_BayerGBRG2RGB_EA  = COLOR_BayerGRBG2BGR_EA,
  819     COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA, //!< equivalent to RGGB Bayer pattern
  820     COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA, //!< equivalent to GRBG Bayer pattern
  821     COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA, //!< equivalent to BGGR Bayer pattern
  822     COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA, //!< equivalent to GBRG Bayer pattern
  824     //! Demosaicing with alpha channel
  825     COLOR_BayerBG2BGRA = 139, //!< equivalent to RGGB Bayer pattern
  826     COLOR_BayerGB2BGRA = 140, //!< equivalent to GRBG Bayer pattern
  827     COLOR_BayerRG2BGRA = 141, //!< equivalent to BGGR Bayer pattern
  828     COLOR_BayerGR2BGRA = 142, //!< equivalent to GBRG Bayer pattern
  830     COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
  831     COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
  832     COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
  833     COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
  835     COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
  836     COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
  837     COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
  838     COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
  840     COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA, //!< equivalent to RGGB Bayer pattern
  841     COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA, //!< equivalent to GRBG Bayer pattern
  842     COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA, //!< equivalent to BGGR Bayer pattern
  843     COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA, //!< equivalent to GBRG Bayer pattern
  845     COLOR_COLORCVT_MAX  = 143
  846  };
  848 //! @addtogroup imgproc_shape
  849 //! @{
  851 //! types of intersection between rectangles
  852 enum RectanglesIntersectTypes  {
  853     INTERSECT_NONE = 0, //!< No intersection
  854     INTERSECT_PARTIAL  = 1, //!< There is a partial intersection
  855     INTERSECT_FULL  = 2 //!< One of the rectangle is fully enclosed in the other
  856  };
  858 /** types of line
  859 @ingroup imgproc_draw
  860 */
  861 enum LineTypes  {
  862     FILLED  = -1,
  863     LINE_4  = 4, //!< 4-connected line
  864     LINE_8  = 8, //!< 8-connected line
  865     LINE_AA = 16 //!< antialiased line
  866  };
  868 /** Only a subset of Hershey fonts <https://en.wikipedia.org/wiki/Hershey_fonts> are supported
  869 @ingroup imgproc_draw
  870 */
  871 enum HersheyFonts  {
  872     FONT_HERSHEY_SIMPLEX        = 0, //!< normal size sans-serif font
  873     FONT_HERSHEY_PLAIN          = 1, //!< small size sans-serif font
  874     FONT_HERSHEY_DUPLEX         = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX)
  875     FONT_HERSHEY_COMPLEX        = 3, //!< normal size serif font
  876     FONT_HERSHEY_TRIPLEX        = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX)
  877     FONT_HERSHEY_COMPLEX_SMALL  = 5, //!< smaller version of FONT_HERSHEY_COMPLEX
  878     FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font
  879     FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX
  880     FONT_ITALIC                 = 16 //!< flag for italic font
  881  };
  883 /** Possible set of marker types used for the cv::drawMarker function
  884 @ingroup imgproc_draw
  885 */
  886 enum MarkerTypes
  887  {
  888     MARKER_CROSS = 0,           //!< A crosshair marker shape
  889     MARKER_TILTED_CROSS = 1,    //!< A 45 degree tilted crosshair marker shape
  890     MARKER_STAR = 2,            //!< A star marker shape, combination of cross and tilted cross
  891     MARKER_DIAMOND = 3,         //!< A diamond marker shape
  892     MARKER_SQUARE = 4,          //!< A square marker shape
  893     MARKER_TRIANGLE_UP = 5,     //!< An upwards pointing triangle marker shape
  894     MARKER_TRIANGLE_DOWN = 6    //!< A downwards pointing triangle marker shape
  895  };
  897 /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
  898 */
  899 class CV_EXPORTS_W GeneralizedHough : public Algorithm
  900  {
  901 public:
  902     //! set template to search
  903     CV_WRAP virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0;
  904     CV_WRAP virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0;
  906     //! find template on image
  907     CV_WRAP virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0;
  908     CV_WRAP virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0;
  910     //! Canny low threshold.
  911     CV_WRAP virtual void setCannyLowThresh(int cannyLowThresh) = 0;
  912     CV_WRAP virtual int getCannyLowThresh() const = 0;
  914     //! Canny high threshold.
  915     CV_WRAP virtual void setCannyHighThresh(int cannyHighThresh) = 0;
  916     CV_WRAP virtual int getCannyHighThresh() const = 0;
  918     //! Minimum distance between the centers of the detected objects.
  919     CV_WRAP virtual void setMinDist(double minDist) = 0;
  920     CV_WRAP virtual double getMinDist() const = 0;
  922     //! Inverse ratio of the accumulator resolution to the image resolution.
  923     CV_WRAP virtual void setDp(double dp) = 0;
  924     CV_WRAP virtual double getDp() const = 0;
  926     //! Maximal size of inner buffers.
  927     CV_WRAP virtual void setMaxBufferSize(int maxBufferSize) = 0;
  928     CV_WRAP virtual int getMaxBufferSize() const = 0;
  929  };
  931 /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
  933 Detects position only without translation and rotation @cite Ballard1981 .
  934 */
  935 class CV_EXPORTS_W GeneralizedHoughBallard : public GeneralizedHough
  936  {
  937 public:
  938     //! R-Table levels.
  939     CV_WRAP virtual void setLevels(int levels) = 0;
  940     CV_WRAP virtual int getLevels() const = 0;
  942     //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected.
  943     CV_WRAP virtual void setVotesThreshold(int votesThreshold) = 0;
  944     CV_WRAP virtual int getVotesThreshold() const = 0;
  945  };
  947 /** @brief finds arbitrary template in the grayscale image using Generalized Hough Transform
  949 Detects position, translation and rotation @cite Guil1999 .
  950 */
  951 class CV_EXPORTS_W GeneralizedHoughGuil : public GeneralizedHough
  952  {
  953 public:
  954     //! Angle difference in degrees between two points in feature.
  955     CV_WRAP virtual void setXi(double xi) = 0;
  956     CV_WRAP virtual double getXi() const = 0;
  958     //! Feature table levels.
  959     CV_WRAP virtual void setLevels(int levels) = 0;
  960     CV_WRAP virtual int getLevels() const = 0;
  962     //! Maximal difference between angles that treated as equal.
  963     CV_WRAP virtual void setAngleEpsilon(double angleEpsilon) = 0;
  964     CV_WRAP virtual double getAngleEpsilon() const = 0;
  966     //! Minimal rotation angle to detect in degrees.
  967     CV_WRAP virtual void setMinAngle(double minAngle) = 0;
  968     CV_WRAP virtual double getMinAngle() const = 0;
  970     //! Maximal rotation angle to detect in degrees.
  971     CV_WRAP virtual void setMaxAngle(double maxAngle) = 0;
  972     CV_WRAP virtual double getMaxAngle() const = 0;
  974     //! Angle step in degrees.
  975     CV_WRAP virtual void setAngleStep(double angleStep) = 0;
  976     CV_WRAP virtual double getAngleStep() const = 0;
  978     //! Angle votes threshold.
  979     CV_WRAP virtual void setAngleThresh(int angleThresh) = 0;
  980     CV_WRAP virtual int getAngleThresh() const = 0;
  982     //! Minimal scale to detect.
  983     CV_WRAP virtual void setMinScale(double minScale) = 0;
  984     CV_WRAP virtual double getMinScale() const = 0;
  986     //! Maximal scale to detect.
  987     CV_WRAP virtual void setMaxScale(double maxScale) = 0;
  988     CV_WRAP virtual double getMaxScale() const = 0;
  990     //! Scale step.
  991     CV_WRAP virtual void setScaleStep(double scaleStep) = 0;
  992     CV_WRAP virtual double getScaleStep() const = 0;
  994     //! Scale votes threshold.
  995     CV_WRAP virtual void setScaleThresh(int scaleThresh) = 0;
  996     CV_WRAP virtual int getScaleThresh() const = 0;
  998     //! Position votes threshold.
  999     CV_WRAP virtual void setPosThresh(int posThresh) = 0;
 1000     CV_WRAP virtual int getPosThresh() const = 0;
 1001  };
 1003 //! @} imgproc_shape
 1005 //! @addtogroup imgproc_hist
 1006 //! @{
 1008 /** @brief Base class for Contrast Limited Adaptive Histogram Equalization.
 1009 */
 1010 class CV_EXPORTS_W CLAHE : public Algorithm
 1011  {
 1012 public:
 1013     /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
 1015     @param src Source image of type CV_8UC1 or CV_16UC1.
 1016     @param dst Destination image.
 1017      */
 1018     CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0;
 1020     /** @brief Sets threshold for contrast limiting.
 1022     @param clipLimit threshold value.
 1023     */
 1024     CV_WRAP virtual void setClipLimit(double clipLimit) = 0;
 1026     //! Returns threshold value for contrast limiting.
 1027     CV_WRAP virtual double getClipLimit() const = 0;
 1029     /** @brief Sets size of grid for histogram equalization. Input image will be divided into
 1030     equally sized rectangular tiles.
 1032     @param tileGridSize defines the number of tiles in row and column.
 1033     */
 1034     CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0;
 1036     //!@brief Returns Size defines the number of tiles in row and column.
 1037     CV_WRAP virtual Size getTilesGridSize() const = 0;
 1039     CV_WRAP virtual void collectGarbage() = 0;
 1040  };
 1042 //! @} imgproc_hist
 1044 //! @addtogroup imgproc_subdiv2d
 1045 //! @{
 1047 class CV_EXPORTS_W Subdiv2D
 1048  {
 1049 public:
 1050     /** Subdiv2D point location cases */
 1051     enum  { PTLOC_ERROR        = -2, //!< Point location error
 1052            PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect
 1053            PTLOC_INSIDE       = 0, //!< Point inside some facet
 1054            PTLOC_VERTEX       = 1, //!< Point coincides with one of the subdivision vertices
 1055            PTLOC_ON_EDGE      = 2  //!< Point on some edge
 1056           };
 1058     /** Subdiv2D edge type navigation (see: getEdge()) */
 1059     enum  { NEXT_AROUND_ORG   = 0x00,
 1060            NEXT_AROUND_DST   = 0x22,
 1061            PREV_AROUND_ORG   = 0x11,
 1062            PREV_AROUND_DST   = 0x33,
 1063            NEXT_AROUND_LEFT  = 0x13,
 1064            NEXT_AROUND_RIGHT = 0x31,
 1065            PREV_AROUND_LEFT  = 0x20,
 1066            PREV_AROUND_RIGHT = 0x02
 1067           };
 1069     /** creates an empty Subdiv2D object.
 1070     To create a new empty Delaunay subdivision you need to use the #initDelaunay function.
 1071      */
 1072     CV_WRAP Subdiv2D();
 1074     /** @overload
 1076     @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
 1078     The function creates an empty Delaunay subdivision where 2D points can be added using the function
 1079     insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
 1080     error is raised.
 1081      */
 1082     CV_WRAP Subdiv2D(Rect rect);
 1084     /** @brief Creates a new empty Delaunay subdivision
 1086     @param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
 1088      */
 1089     CV_WRAP void initDelaunay(Rect rect);
 1091     /** @brief Insert a single point into a Delaunay triangulation.
 1093     @param pt Point to insert.
 1095     The function inserts a single point into a subdivision and modifies the subdivision topology
 1096     appropriately. If a point with the same coordinates exists already, no new point is added.
 1097     @returns the ID of the point.
 1099     @note If the point is outside of the triangulation specified rect a runtime error is raised.
 1100      */
 1101     CV_WRAP int insert(Point2f pt);
 1103     /** @brief Insert multiple points into a Delaunay triangulation.
 1105     @param ptvec Points to insert.
 1107     The function inserts a vector of points into a subdivision and modifies the subdivision topology
 1108     appropriately.
 1109      */
 1110     CV_WRAP void insert(const std::vector<Point2f>& ptvec);
 1112     /** @brief Returns the location of a point within a Delaunay triangulation.
 1114     @param pt Point to locate.
 1115     @param edge Output edge that the point belongs to or is located to the right of it.
 1116     @param vertex Optional output vertex the input point coincides with.
 1118     The function locates the input point within the subdivision and gives one of the triangle edges
 1119     or vertices.
 1121     @returns an integer which specify one of the following five cases for point location:
 1122     -  The point falls into some facet. The function returns #PTLOC_INSIDE and edge will contain one of
 1123        edges of the facet.
 1124     -  The point falls onto the edge. The function returns #PTLOC_ON_EDGE and edge will contain this edge.
 1125     -  The point coincides with one of the subdivision vertices. The function returns #PTLOC_VERTEX and
 1126        vertex will contain a pointer to the vertex.
 1127     -  The point is outside the subdivision reference rectangle. The function returns #PTLOC_OUTSIDE_RECT
 1128        and no pointers are filled.
 1129     -  One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
 1130        processing mode is selected, #PTLOC_ERROR is returned.
 1131      */
 1132     CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
 1134     /** @brief Finds the subdivision vertex closest to the given point.
 1136     @param pt Input point.
 1137     @param nearestPt Output subdivision vertex point.
 1139     The function is another function that locates the input point within the subdivision. It finds the
 1140     subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
 1141     of the facet containing the input point, though the facet (located using locate() ) is used as a
 1142     starting point.
 1144     @returns vertex ID.
 1145      */
 1146     CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0);
 1148     /** @brief Returns a list of all edges.
 1150     @param edgeList Output vector.
 1152     The function gives each edge as a 4 numbers vector, where each two are one of the edge
 1153     vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
 1154      */
 1155     CV_WRAP void getEdgeList(CV_OUT std::vector<Vec4f>& edgeList) const;
 1157     /** @brief Returns a list of the leading edge ID connected to each triangle.
 1159     @param leadingEdgeList Output vector.
 1161     The function gives one edge ID for each triangle.
 1162      */
 1163     CV_WRAP void getLeadingEdgeList(CV_OUT std::vector<int>& leadingEdgeList) const;
 1165     /** @brief Returns a list of all triangles.
 1167     @param triangleList Output vector.
 1169     The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
 1170     vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
 1171      */
 1172     CV_WRAP void getTriangleList(CV_OUT std::vector<Vec6f>& triangleList) const;
 1174     /** @brief Returns a list of all Voronoi facets.
 1176     @param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
 1177     @param facetList Output vector of the Voronoi facets.
 1178     @param facetCenters Output vector of the Voronoi facets center points.
 1180      */
 1181     CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
 1182                                      CV_OUT std::vector<Point2f>& facetCenters);
 1184     /** @brief Returns vertex location from vertex ID.
 1186     @param vertex vertex ID.
 1187     @param firstEdge Optional. The first edge ID which is connected to the vertex.
 1188     @returns vertex (x,y)
 1190      */
 1191     CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const;
 1193     /** @brief Returns one of the edges related to the given edge.
 1195     @param edge Subdivision edge ID.
 1196     @param nextEdgeType Parameter specifying which of the related edges to return.
 1197     The following values are possible:
 1198     -   NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
 1199     -   NEXT_AROUND_DST next around the edge vertex ( eDnext )
 1200     -   PREV_AROUND_ORG previous around the edge origin (reversed eRnext )
 1201     -   PREV_AROUND_DST previous around the edge destination (reversed eLnext )
 1202     -   NEXT_AROUND_LEFT next around the left facet ( eLnext )
 1203     -   NEXT_AROUND_RIGHT next around the right facet ( eRnext )
 1204     -   PREV_AROUND_LEFT previous around the left facet (reversed eOnext )
 1205     -   PREV_AROUND_RIGHT previous around the right facet (reversed eDnext )
 1207     ![sample output](pics/quadedge.png)
 1209     @returns edge ID related to the input edge.
 1210      */
 1211     CV_WRAP int getEdge( int edge, int nextEdgeType ) const;
 1213     /** @brief Returns next edge around the edge origin.
 1215     @param edge Subdivision edge ID.
 1217     @returns an integer which is next edge ID around the edge origin: eOnext on the
 1218     picture above if e is the input edge).
 1219      */
 1220     CV_WRAP int nextEdge(int edge) const;
 1222     /** @brief Returns another edge of the same quad-edge.
 1224     @param edge Subdivision edge ID.
 1225     @param rotate Parameter specifying which of the edges of the same quad-edge as the input
 1226     one to return. The following values are possible:
 1227     -   0 - the input edge ( e on the picture below if e is the input edge)
 1228     -   1 - the rotated edge ( eRot )
 1229     -   2 - the reversed edge (reversed e (in green))
 1230     -   3 - the reversed rotated edge (reversed eRot (in green))
 1232     @returns one of the edges ID of the same quad-edge as the input edge.
 1233      */
 1234     CV_WRAP int rotateEdge(int edge, int rotate) const;
 1235     CV_WRAP int symEdge(int edge) const;
 1237     /** @brief Returns the edge origin.
 1239     @param edge Subdivision edge ID.
 1240     @param orgpt Output vertex location.
 1242     @returns vertex ID.
 1243      */
 1244     CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const;
 1246     /** @brief Returns the edge destination.
 1248     @param edge Subdivision edge ID.
 1249     @param dstpt Output vertex location.
 1251     @returns vertex ID.
 1252      */
 1253     CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const;
 1255 protected:
 1256     int newEdge();
 1257     void deleteEdge(int edge);
 1258     int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0);
 1259     void deletePoint(int vtx);
 1260     void setEdgePoints( int edge, int orgPt, int dstPt );
 1261     void splice( int edgeA, int edgeB );
 1262     int connectEdges( int edgeA, int edgeB );
 1263     void swapEdges( int edge );
 1264     int isRightOf(Point2f pt, int edge) const;
 1265     void calcVoronoi();
 1266     void clearVoronoi();
 1267     void checkSubdiv() const;
 1269     struct CV_EXPORTS Vertex
 1270      {
 1271         Vertex();
 1272         Vertex(Point2f pt, bool isvirtual, int firstEdge=0);
 1273         bool isvirtual() const;
 1274         bool isfree() const;
 1276         int firstEdge;
 1277         int type;
 1278         Point2f pt;
 1279      };
 1281     struct CV_EXPORTS QuadEdge
 1282      {
 1283         QuadEdge();
 1284         QuadEdge(int edgeidx);
 1285         bool isfree() const;
 1287         int next[4];
 1288         int pt[4];
 1289      };
 1291     //! All of the vertices
 1292     std::vector<Vertex> vtx;
 1293     //! All of the edges
 1294     std::vector<QuadEdge> qedges;
 1295     int freeQEdge;
 1296     int freePoint;
 1297     bool validGeometry;
 1299     int recentEdge;
 1300     //! Top left corner of the bounding rect
 1301     Point2f topLeft;
 1302     //! Bottom right corner of the bounding rect
 1303     Point2f bottomRight;
 1304  };
 1306 //! @} imgproc_subdiv2d
 1308 //! @addtogroup imgproc_feature
 1309 //! @{
 1311 /** @example samples/cpp/lsd_lines.cpp
 1312 An example using the LineSegmentDetector
 1313 \image html building_lsd.png "Sample output image" width=434 height=300
 1314 */
 1316 /** @brief Line segment detector class
 1318 following the algorithm described at @cite Rafael12 .
 1320 @note Implementation has been removed from OpenCV version 3.4.6 to 3.4.15 and version 4.1.0 to 4.5.3 due original code license conflict.
 1321 restored again after [Computation of a NFA](https://github.com/rafael-grompone-von-gioi/binomial_nfa) code published under the MIT license.
 1322 */
 1323 class CV_EXPORTS_W LineSegmentDetector : public Algorithm
 1324  {
 1325 public:
 1327     /** @brief Finds lines in the input image.
 1329     This is the output of the default parameters of the algorithm on the above shown image.
 1331     ![image](pics/building_lsd.png)
 1333     @param image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
 1334     `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
 1335     @param lines A vector of Vec4f elements specifying the beginning and ending point of a line. Where
 1336     Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
 1337     oriented depending on the gradient.
 1338     @param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
 1339     @param prec Vector of precisions with which the lines are found.
 1340     @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
 1341     bigger the value, logarithmically better the detection.
 1342     - -1 corresponds to 10 mean false alarms
 1343     - 0 corresponds to 1 mean false alarm
 1344     - 1 corresponds to 0.1 mean false alarms
 1345     This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
 1346     */
 1347     CV_WRAP virtual void detect(InputArray image, OutputArray lines,
 1348                         OutputArray width = noArray(), OutputArray prec = noArray(),
 1349                         OutputArray nfa = noArray()) = 0;
 1351     /** @brief Draws the line segments on a given image.
 1352     @param image The image, where the lines will be drawn. Should be bigger or equal to the image,
 1353     where the lines were found.
 1354     @param lines A vector of the lines that needed to be drawn.
 1355      */
 1356     CV_WRAP virtual void drawSegments(InputOutputArray image, InputArray lines) = 0;
 1358     /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
 1360     @param size The size of the image, where lines1 and lines2 were found.
 1361     @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
 1362     @param lines2 The second group of lines. They visualized in red color.
 1363     @param image Optional image, where the lines will be drawn. The image should be color(3-channel)
 1364     in order for lines1 and lines2 to be drawn in the above mentioned colors.
 1365      */
 1366     CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray image = noArray()) = 0;
 1368     virtual ~LineSegmentDetector()  {  }
 1369  };
 1371 /** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
 1373 The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
 1374 to edit those, as to tailor it for their own application.
 1376 @param refine The way found lines will be refined, see #LineSegmentDetectorModes
 1377 @param scale The scale of the image that will be used to find the lines. Range (0..1].
 1378 @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
 1379 @param quant Bound to the quantization error on the gradient norm.
 1380 @param ang_th Gradient angle tolerance in degrees.
 1381 @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
 1382 @param density_th Minimal density of aligned region points in the enclosing rectangle.
 1383 @param n_bins Number of bins in pseudo-ordering of gradient modulus.
 1384  */
 1385 CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
 1386     int refine = LSD_REFINE_STD, double scale = 0.8,
 1387     double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5,
 1388     double log_eps = 0, double density_th = 0.7, int n_bins = 1024);
 1390 //! @} imgproc_feature
 1392 //! @addtogroup imgproc_filter
 1393 //! @{
 1395 /** @brief Returns Gaussian filter coefficients.
 1397 The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter
 1398 coefficients:
 1400 \f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f]
 1402 where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$.
 1404 Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
 1405 smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
 1406 You may also use the higher-level GaussianBlur.
 1407 @param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive.
 1408 @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
 1409 `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
 1410 @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
 1411 @sa  sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur
 1412  */
 1413 CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F );
 1415 /** @brief Returns filter coefficients for computing spatial image derivatives.
 1417 The function computes and returns the filter coefficients for spatial image derivatives. When
 1418 `ksize=FILTER_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see #Scharr). Otherwise, Sobel
 1419 kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
 1421 @param kx Output matrix of row filter coefficients. It has the type ktype .
 1422 @param ky Output matrix of column filter coefficients. It has the type ktype .
 1423 @param dx Derivative order in respect of x.
 1424 @param dy Derivative order in respect of y.
 1425 @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
 1426 @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
 1427 Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are
 1428 going to filter floating-point images, you are likely to use the normalized kernels. But if you
 1429 compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
 1430 all the fractional bits, you may want to set normalize=false .
 1431 @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
 1432  */
 1433 CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky,
 1434                                    int dx, int dy, int ksize,
 1435                                    bool normalize = false, int ktype = CV_32F );
 1437 /** @brief Returns Gabor filter coefficients.
 1439 For more details about gabor filter equations and parameters, see: [Gabor
 1440 Filter](http://en.wikipedia.org/wiki/Gabor_filter).
 1442 @param ksize Size of the filter returned.
 1443 @param sigma Standard deviation of the gaussian envelope.
 1444 @param theta Orientation of the normal to the parallel stripes of a Gabor function.
 1445 @param lambd Wavelength of the sinusoidal factor.
 1446 @param gamma Spatial aspect ratio.
 1447 @param psi Phase offset.
 1448 @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
 1449  */
 1450 CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd,
 1451                                  double gamma, double psi = CV_PI*0.5, int ktype = CV_64F );
 1453 //! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
 1454 static inline Scalar morphologyDefaultBorderValue()  { return Scalar::all(DBL_MAX);  }
 1456 /** @brief Returns a structuring element of the specified size and shape for morphological operations.
 1458 The function constructs and returns the structuring element that can be further passed to #erode,
 1459 #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
 1460 the structuring element.
 1462 @param shape Element shape that could be one of #MorphShapes
 1463 @param ksize Size of the structuring element.
 1464 @param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the
 1465 anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
 1466 position. In other cases the anchor just regulates how much the result of the morphological
 1467 operation is shifted.
 1468  */
 1469 CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1));
 1471 /** @example samples/cpp/tutorial_code/ImgProc/Smoothing/Smoothing.cpp
 1472 Sample code for simple filters
 1473 ![Sample screenshot](Smoothing_Tutorial_Result_Median_Filter.jpg)
 1474 Check @ref tutorial_gausian_median_blur_bilateral_filter "the corresponding tutorial" for more details
 1475  */
 1477 /** @brief Blurs an image using the median filter.
 1479 The function smoothes an image using the median filter with the \f$\texttt{ksize} \times
 1480 \texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently.
 1481 In-place operation is supported.
 1483 @note The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
 1485 @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
 1486 CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
 1487 @param dst destination array of the same size and type as src.
 1488 @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
 1489 @sa  bilateralFilter, blur, boxFilter, GaussianBlur
 1490  */
 1491 CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize );
 1493 /** @brief Blurs an image using a Gaussian filter.
 1495 The function convolves the source image with the specified Gaussian kernel. In-place filtering is
 1496 supported.
 1498 @param src input image; the image can have any number of channels, which are processed
 1499 independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
 1500 @param dst output image of the same size and type as src.
 1501 @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
 1502 positive and odd. Or, they can be zero's and then they are computed from sigma.
 1503 @param sigmaX Gaussian kernel standard deviation in X direction.
 1504 @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
 1505 equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
 1506 respectively (see #getGaussianKernel for details); to fully control the result regardless of
 1507 possible future modifications of all this semantics, it is recommended to specify all of ksize,
 1508 sigmaX, and sigmaY.
 1509 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1511 @sa  sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur
 1512  */
 1513 CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize,
 1514                                 double sigmaX, double sigmaY = 0,
 1515                                 int borderType = BORDER_DEFAULT );
 1517 /** @brief Applies the bilateral filter to an image.
 1519 The function applies bilateral filtering to the input image, as described in
 1520 http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
 1521 bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
 1522 very slow compared to most filters.
 1524 _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
 1525 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
 1526 strong effect, making the image look "cartoonish".
 1528 _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
 1529 applications, and perhaps d=9 for offline applications that need heavy noise filtering.
 1531 This filter does not work inplace.
 1532 @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
 1533 @param dst Destination image of the same size and type as src .
 1534 @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
 1535 it is computed from sigmaSpace.
 1536 @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
 1537 farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
 1538 in larger areas of semi-equal color.
 1539 @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
 1540 farther pixels will influence each other as long as their colors are close enough (see sigmaColor
 1541 ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
 1542 proportional to sigmaSpace.
 1543 @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
 1544  */
 1545 CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d,
 1546                                    double sigmaColor, double sigmaSpace,
 1547                                    int borderType = BORDER_DEFAULT );
 1549 /** @brief Blurs an image using the box filter.
 1551 The function smooths an image using the kernel:
 1553 \f[\texttt{K} =  \alpha \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1 \end{bmatrix}\f]
 1555 where
 1557 \f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true}  \\1 & \texttt{otherwise}\end{cases}\f]
 1559 Unnormalized box filter is useful for computing various integral characteristics over each pixel
 1560 neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
 1561 algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
 1563 @param src input image.
 1564 @param dst output image of the same size and type as src.
 1565 @param ddepth the output image depth (-1 to use src.depth()).
 1566 @param ksize blurring kernel size.
 1567 @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
 1568 center.
 1569 @param normalize flag, specifying whether the kernel is normalized by its area or not.
 1570 @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
 1571 @sa  blur, bilateralFilter, GaussianBlur, medianBlur, integral
 1572  */
 1573 CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
 1574                              Size ksize, Point anchor = Point(-1,-1),
 1575                              bool normalize = true,
 1576                              int borderType = BORDER_DEFAULT );
 1578 /** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter.
 1580 For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
 1581 pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
 1583 The unnormalized square box filter can be useful in computing local image statistics such as the local
 1584 variance and standard deviation around the neighborhood of a pixel.
 1586 @param src input image
 1587 @param dst output image of the same size and type as src
 1588 @param ddepth the output image depth (-1 to use src.depth())
 1589 @param ksize kernel size
 1590 @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
 1591 center.
 1592 @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
 1593 @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
 1594 @sa boxFilter
 1595 */
 1596 CV_EXPORTS_W void sqrBoxFilter( InputArray src, OutputArray dst, int ddepth,
 1597                                 Size ksize, Point anchor = Point(-1, -1),
 1598                                 bool normalize = true,
 1599                                 int borderType = BORDER_DEFAULT );
 1601 /** @brief Blurs an image using the normalized box filter.
 1603 The function smooths an image using the kernel:
 1605 \f[\texttt{K} =  \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 &  \cdots & 1 & 1  \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \hdotsfor{6} \\ 1 & 1 & 1 &  \cdots & 1 & 1  \\ \end{bmatrix}\f]
 1607 The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
 1608 anchor, true, borderType)`.
 1610 @param src input image; it can have any number of channels, which are processed independently, but
 1611 the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
 1612 @param dst output image of the same size and type as src.
 1613 @param ksize blurring kernel size.
 1614 @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
 1615 center.
 1616 @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
 1617 @sa  boxFilter, bilateralFilter, GaussianBlur, medianBlur
 1618  */
 1619 CV_EXPORTS_W void blur( InputArray src, OutputArray dst,
 1620                         Size ksize, Point anchor = Point(-1,-1),
 1621                         int borderType = BORDER_DEFAULT );
 1623 /** @brief Blurs an image using the stackBlur.
 1625 The function applies and stackBlur to an image.
 1626 stackBlur can generate similar results as Gaussian blur, and the time consumption does not increase with the increase of kernel size.
 1627 It creates a kind of moving stack of colors whilst scanning through the image. Thereby it just has to add one new block of color to the right side
 1628 of the stack and remove the leftmost color. The remaining colors on the topmost layer of the stack are either added on or reduced by one,
 1629 depending on if they are on the right or on the left side of the stack. The only supported borderType is BORDER_REPLICATE.
 1630 Original paper was proposed by Mario Klingemann, which can be found http://underdestruction.com/2004/02/25/stackblur-2004.
 1632 @param src input image. The number of channels can be arbitrary, but the depth should be one of
 1633 CV_8U, CV_16U, CV_16S or CV_32F.
 1634 @param dst output image of the same size and type as src.
 1635 @param ksize stack-blurring kernel size. The ksize.width and ksize.height can differ but they both must be
 1636 positive and odd.
 1637 */
 1638 CV_EXPORTS_W void stackBlur(InputArray src, OutputArray dst, Size ksize);
 1640 /** @brief Convolves an image with the kernel.
 1642 The function applies an arbitrary linear filter to an image. In-place operation is supported. When
 1643 the aperture is partially outside the image, the function interpolates outlier pixel values
 1644 according to the specified border mode.
 1646 The function does actually compute correlation, not the convolution:
 1648 \f[\texttt{dst} (x,y) =  \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}}  \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
 1650 That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
 1651 the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
 1652 anchor.y - 1)`.
 1654 The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
 1655 larger) and the direct algorithm for small kernels.
 1657 @param src input image.
 1658 @param dst output image of the same size and the same number of channels as src.
 1659 @param ddepth desired depth of the destination image, see @ref filter_depths "combinations"
 1660 @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
 1661 matrix; if you want to apply different kernels to different channels, split the image into
 1662 separate color planes using split and process them individually.
 1663 @param anchor anchor of the kernel that indicates the relative position of a filtered point within
 1664 the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
 1665 is at the kernel center.
 1666 @param delta optional value added to the filtered pixels before storing them in dst.
 1667 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1668 @sa  sepFilter2D, dft, matchTemplate
 1669  */
 1670 CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
 1671                             InputArray kernel, Point anchor = Point(-1,-1),
 1672                             double delta = 0, int borderType = BORDER_DEFAULT );
 1674 /** @brief Applies a separable linear filter to an image.
 1676 The function applies a separable linear filter to the image. That is, first, every row of src is
 1677 filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
 1678 kernel kernelY. The final result shifted by delta is stored in dst .
 1680 @param src Source image.
 1681 @param dst Destination image of the same size and the same number of channels as src .
 1682 @param ddepth Destination image depth, see @ref filter_depths "combinations"
 1683 @param kernelX Coefficients for filtering each row.
 1684 @param kernelY Coefficients for filtering each column.
 1685 @param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor
 1686 is at the kernel center.
 1687 @param delta Value added to the filtered results before storing them.
 1688 @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1689 @sa  filter2D, Sobel, GaussianBlur, boxFilter, blur
 1690  */
 1691 CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth,
 1692                                InputArray kernelX, InputArray kernelY,
 1693                                Point anchor = Point(-1,-1),
 1694                                double delta = 0, int borderType = BORDER_DEFAULT );
 1696 /** @example samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp
 1697 Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
 1698 ![Sample screenshot](Sobel_Derivatives_Tutorial_Result.jpg)
 1699 Check @ref tutorial_sobel_derivatives "the corresponding tutorial" for more details
 1700 */
 1702 /** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
 1704 In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to
 1705 calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$
 1706 kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
 1707 or the second x- or y- derivatives.
 1709 There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr
 1710 filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is
 1712 \f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f]
 1714 for the x-derivative, or transposed for the y-derivative.
 1716 The function calculates an image derivative by convolving the image with the appropriate kernel:
 1718 \f[\texttt{dst} =  \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f]
 1720 The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
 1721 resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
 1722 or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
 1723 case corresponds to a kernel of:
 1725 \f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f]
 1727 The second case corresponds to a kernel of:
 1729 \f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f]
 1731 @param src input image.
 1732 @param dst output image of the same size and the same number of channels as src .
 1733 @param ddepth output image depth, see @ref filter_depths "combinations"; in the case of
 1734     8-bit input images it will result in truncated derivatives.
 1735 @param dx order of the derivative x.
 1736 @param dy order of the derivative y.
 1737 @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
 1738 @param scale optional scale factor for the computed derivative values; by default, no scaling is
 1739 applied (see #getDerivKernels for details).
 1740 @param delta optional delta value that is added to the results prior to storing them in dst.
 1741 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1742 @sa  Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar
 1743  */
 1744 CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth,
 1745                          int dx, int dy, int ksize = 3,
 1746                          double scale = 1, double delta = 0,
 1747                          int borderType = BORDER_DEFAULT );
 1749 /** @brief Calculates the first order image derivative in both x and y using a Sobel operator
 1751 Equivalent to calling:
 1753 @code
 1754 Sobel( src, dx, CV_16SC1, 1, 0, 3 );
 1755 Sobel( src, dy, CV_16SC1, 0, 1, 3 );
 1756 @endcode
 1758 @param src input image.
 1759 @param dx output image with first-order derivative in x.
 1760 @param dy output image with first-order derivative in y.
 1761 @param ksize size of Sobel kernel. It must be 3.
 1762 @param borderType pixel extrapolation method, see #BorderTypes.
 1763                   Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
 1765 @sa Sobel
 1766  */
 1768 CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx,
 1769                                    OutputArray dy, int ksize = 3,
 1770                                    int borderType = BORDER_DEFAULT );
 1772 /** @brief Calculates the first x- or y- image derivative using Scharr operator.
 1774 The function computes the first x- or y- spatial image derivative using the Scharr operator. The
 1775 call
 1777 \f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f]
 1779 is equivalent to
 1781 \f[\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER_SCHARR, scale, delta, borderType)} .\f]
 1783 @param src input image.
 1784 @param dst output image of the same size and the same number of channels as src.
 1785 @param ddepth output image depth, see @ref filter_depths "combinations"
 1786 @param dx order of the derivative x.
 1787 @param dy order of the derivative y.
 1788 @param scale optional scale factor for the computed derivative values; by default, no scaling is
 1789 applied (see #getDerivKernels for details).
 1790 @param delta optional delta value that is added to the results prior to storing them in dst.
 1791 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1792 @sa  cartToPolar
 1793  */
 1794 CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth,
 1795                           int dx, int dy, double scale = 1, double delta = 0,
 1796                           int borderType = BORDER_DEFAULT );
 1798 /** @example samples/cpp/laplace.cpp
 1799 An example using Laplace transformations for edge detection
 1800 */
 1802 /** @brief Calculates the Laplacian of an image.
 1804 The function calculates the Laplacian of the source image by adding up the second x and y
 1805 derivatives calculated using the Sobel operator:
 1807 \f[\texttt{dst} =  \Delta \texttt{src} =  \frac{\partial^2 \texttt{src}}{\partial x^2} +  \frac{\partial^2 \texttt{src}}{\partial y^2}\f]
 1809 This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
 1810 with the following \f$3 \times 3\f$ aperture:
 1812 \f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f]
 1814 @param src Source image.
 1815 @param dst Destination image of the same size and the same number of channels as src .
 1816 @param ddepth Desired depth of the destination image, see @ref filter_depths "combinations".
 1817 @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
 1818 details. The size must be positive and odd.
 1819 @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
 1820 applied. See #getDerivKernels for details.
 1821 @param delta Optional delta value that is added to the results prior to storing them in dst .
 1822 @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 1823 @sa  Sobel, Scharr
 1824  */
 1825 CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth,
 1826                              int ksize = 1, double scale = 1, double delta = 0,
 1827                              int borderType = BORDER_DEFAULT );
 1829 //! @} imgproc_filter
 1831 //! @addtogroup imgproc_feature
 1832 //! @{
 1834 /** @example samples/cpp/edge.cpp
 1835 This program demonstrates usage of the Canny edge detector
 1837 Check @ref tutorial_canny_detector "the corresponding tutorial" for more details
 1838 */
 1840 /** @brief Finds edges in an image using the Canny algorithm @cite Canny86 .
 1842 The function finds edges in the input image and marks them in the output map edges using the
 1843 Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
 1844 largest value is used to find initial segments of strong edges. See
 1845 <http://en.wikipedia.org/wiki/Canny_edge_detector>
 1847 @param image 8-bit input image.
 1848 @param edges output edge map; single channels 8-bit image, which has the same size as image .
 1849 @param threshold1 first threshold for the hysteresis procedure.
 1850 @param threshold2 second threshold for the hysteresis procedure.
 1851 @param apertureSize aperture size for the Sobel operator.
 1852 @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
 1853 \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
 1854 L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
 1855 L2gradient=false ).
 1856  */
 1857 CV_EXPORTS_W void Canny( InputArray image, OutputArray edges,
 1858                          double threshold1, double threshold2,
 1859                          int apertureSize = 3, bool L2gradient = false );
 1861 /** \overload
 1863 Finds edges in an image using the Canny algorithm with custom image gradient.
 1865 @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
 1866 @param dy 16-bit y derivative of input image (same type as dx).
 1867 @param edges output edge map; single channels 8-bit image, which has the same size as image .
 1868 @param threshold1 first threshold for the hysteresis procedure.
 1869 @param threshold2 second threshold for the hysteresis procedure.
 1870 @param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm
 1871 \f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude (
 1872 L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough (
 1873 L2gradient=false ).
 1874  */
 1875 CV_EXPORTS_W void Canny( InputArray dx, InputArray dy,
 1876                          OutputArray edges,
 1877                          double threshold1, double threshold2,
 1878                          bool L2gradient = false );
 1880 /** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection.
 1882 The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
 1883 eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms
 1884 of the formulae in the cornerEigenValsAndVecs description.
 1886 @param src Input single-channel 8-bit or floating-point image.
 1887 @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
 1888 src .
 1889 @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
 1890 @param ksize Aperture parameter for the Sobel operator.
 1891 @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
 1892  */
 1893 CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst,
 1894                                      int blockSize, int ksize = 3,
 1895                                      int borderType = BORDER_DEFAULT );
 1897 /** @brief Harris corner detector.
 1899 The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
 1900 cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance
 1901 matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it
 1902 computes the following characteristic:
 1904 \f[\texttt{dst} (x,y) =  \mathrm{det} M^{(x,y)} - k  \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f]
 1906 Corners in the image can be found as the local maxima of this response map.
 1908 @param src Input single-channel 8-bit or floating-point image.
 1909 @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
 1910 size as src .
 1911 @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
 1912 @param ksize Aperture parameter for the Sobel operator.
 1913 @param k Harris detector free parameter. See the formula above.
 1914 @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
 1915  */
 1916 CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize,
 1917                                 int ksize, double k,
 1918                                 int borderType = BORDER_DEFAULT );
 1920 /** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection.
 1922 For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize
 1923 neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as:
 1925 \f[M =  \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 &  \sum _{S(p)}dI/dx dI/dy  \\ \sum _{S(p)}dI/dx dI/dy &  \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f]
 1927 where the derivatives are computed using the Sobel operator.
 1929 After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as
 1930 \f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where
 1932 -   \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$
 1933 -   \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$
 1934 -   \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$
 1936 The output of the function can be used for robust edge or corner detection.
 1938 @param src Input single-channel 8-bit or floating-point image.
 1939 @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
 1940 @param blockSize Neighborhood size (see details below).
 1941 @param ksize Aperture parameter for the Sobel operator.
 1942 @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
 1944 @sa  cornerMinEigenVal, cornerHarris, preCornerDetect
 1945  */
 1946 CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst,
 1947                                           int blockSize, int ksize,
 1948                                           int borderType = BORDER_DEFAULT );
 1950 /** @brief Calculates a feature map for corner detection.
 1952 The function calculates the complex spatial derivative-based function of the source image
 1954 \f[\texttt{dst} = (D_x  \texttt{src} )^2  \cdot D_{yy}  \texttt{src} + (D_y  \texttt{src} )^2  \cdot D_{xx}  \texttt{src} - 2 D_x  \texttt{src} \cdot D_y  \texttt{src} \cdot D_{xy}  \texttt{src}\f]
 1956 where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image
 1957 derivatives, and \f$D_{xy}\f$ is the mixed derivative.
 1959 The corners can be found as local maximums of the functions, as shown below:
 1960 @code
 1961     Mat corners, dilated_corners;
 1962     preCornerDetect(image, corners, 3);
 1963     // dilation with 3x3 rectangular structuring element
 1964     dilate(corners, dilated_corners, Mat(), 1);
 1965     Mat corner_mask = corners == dilated_corners;
 1966 @endcode
 1968 @param src Source single-channel 8-bit of floating-point image.
 1969 @param dst Output image that has the type CV_32F and the same size as src .
 1970 @param ksize %Aperture size of the Sobel .
 1971 @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
 1972  */
 1973 CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize,
 1974                                    int borderType = BORDER_DEFAULT );
 1976 /** @brief Refines the corner locations.
 1978 The function iterates to find the sub-pixel accurate location of corners or radial saddle
 1979 points as described in @cite forstner1987fast, and as shown on the figure below.
 1981 ![image](pics/cornersubpix.png)
 1983 Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$
 1984 to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$
 1985 subject to image and measurement noise. Consider the expression:
 1987 \f[\epsilon _i = {DI_{p_i}}^T  \cdot (q - p_i)\f]
 1989 where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The
 1990 value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up
 1991 with \f$\epsilon_i\f$ set to zero:
 1993 \f[\sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T) \cdot q -  \sum _i(DI_{p_i}  \cdot {DI_{p_i}}^T  \cdot p_i)\f]
 1995 where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first
 1996 gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
 1998 \f[q = G^{-1}  \cdot b\f]
 2000 The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
 2001 until the center stays within a set threshold.
 2003 @param image Input single-channel, 8-bit or float image.
 2004 @param corners Initial coordinates of the input corners and refined coordinates provided for
 2005 output.
 2006 @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
 2007 then a \f$(5*2+1) \times (5*2+1) = 11 \times 11\f$ search window is used.
 2008 @param zeroZone Half of the size of the dead region in the middle of the search zone over which
 2009 the summation in the formula below is not done. It is used sometimes to avoid possible
 2010 singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
 2011 a size.
 2012 @param criteria Criteria for termination of the iterative process of corner refinement. That is,
 2013 the process of corner position refinement stops either after criteria.maxCount iterations or when
 2014 the corner position moves by less than criteria.epsilon on some iteration.
 2015  */
 2016 CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners,
 2017                                 Size winSize, Size zeroZone,
 2018                                 TermCriteria criteria );
 2020 /** @brief Determines strong corners on an image.
 2022 The function finds the most prominent corners in the image or in the specified image region, as
 2023 described in @cite Shi94
 2025 -   Function calculates the corner quality measure at every source image pixel using the
 2026     #cornerMinEigenVal or #cornerHarris .
 2027 -   Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
 2028     retained).
 2029 -   The corners with the minimal eigenvalue less than
 2030     \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected.
 2031 -   The remaining corners are sorted by the quality measure in the descending order.
 2032 -   Function throws away each corner for which there is a stronger corner at a distance less than
 2033     maxDistance.
 2035 The function can be used to initialize a point-based tracker of an object.
 2037 @note If the function is called with different values A and B of the parameter qualityLevel , and
 2038 A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
 2039 with qualityLevel=B .
 2041 @param image Input 8-bit or floating-point 32-bit, single-channel image.
 2042 @param corners Output vector of detected corners.
 2043 @param maxCorners Maximum number of corners to return. If there are more corners than are found,
 2044 the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
 2045 and all detected corners are returned.
 2046 @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
 2047 parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
 2048 (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
 2049 quality measure less than the product are rejected. For example, if the best corner has the
 2050 quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
 2051 less than 15 are rejected.
 2052 @param minDistance Minimum possible Euclidean distance between the returned corners.
 2053 @param mask Optional region of interest. If the image is not empty (it needs to have the type
 2054 CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
 2055 @param blockSize Size of an average block for computing a derivative covariation matrix over each
 2056 pixel neighborhood. See cornerEigenValsAndVecs .
 2057 @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
 2058 or #cornerMinEigenVal.
 2059 @param k Free parameter of the Harris detector.
 2061 @sa  cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform,
 2062  */
 2064 CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
 2065                                      int maxCorners, double qualityLevel, double minDistance,
 2066                                      InputArray mask = noArray(), int blockSize = 3,
 2067                                      bool useHarrisDetector = false, double k = 0.04 );
 2069 CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners,
 2070                                      int maxCorners, double qualityLevel, double minDistance,
 2071                                      InputArray mask, int blockSize,
 2072                                      int gradientSize, bool useHarrisDetector = false,
 2073                                      double k = 0.04 );
 2075 /** @brief Same as above, but returns also quality measure of the detected corners.
 2077 @param image Input 8-bit or floating-point 32-bit, single-channel image.
 2078 @param corners Output vector of detected corners.
 2079 @param maxCorners Maximum number of corners to return. If there are more corners than are found,
 2080 the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
 2081 and all detected corners are returned.
 2082 @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
 2083 parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
 2084 (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
 2085 quality measure less than the product are rejected. For example, if the best corner has the
 2086 quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
 2087 less than 15 are rejected.
 2088 @param minDistance Minimum possible Euclidean distance between the returned corners.
 2089 @param mask Region of interest. If the image is not empty (it needs to have the type
 2090 CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
 2091 @param cornersQuality Output vector of quality measure of the detected corners.
 2092 @param blockSize Size of an average block for computing a derivative covariation matrix over each
 2093 pixel neighborhood. See cornerEigenValsAndVecs .
 2094 @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
 2095 See cornerEigenValsAndVecs .
 2096 @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
 2097 or #cornerMinEigenVal.
 2098 @param k Free parameter of the Harris detector.
 2099  */
 2100 CV_EXPORTS CV_WRAP_AS(goodFeaturesToTrackWithQuality) void goodFeaturesToTrack(
 2101         InputArray image, OutputArray corners,
 2102         int maxCorners, double qualityLevel, double minDistance,
 2103         InputArray mask, OutputArray cornersQuality, int blockSize = 3,
 2104         int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04);
 2106 /** @example samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
 2107 An example using the Hough line detector
 2108 ![Sample input image](Hough_Lines_Tutorial_Original_Image.jpg) ![Output image](Hough_Lines_Tutorial_Result.jpg)
 2109 */
 2111 /** @brief Finds lines in a binary image using the standard Hough transform.
 2113 The function implements the standard or standard multi-scale Hough transform algorithm for line
 2114 detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
 2115 transform.
 2117 @param image 8-bit, single-channel binary source image. The image may be modified by the function.
 2118 @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
 2119 \f$(\rho, \theta)\f$ or \f$(\rho, \theta, \textrm{votes})\f$, where \f$\rho\f$ is the distance from
 2120 the coordinate origin \f$(0,0)\f$ (top-left corner of the image), \f$\theta\f$ is the line rotation
 2121 angle in radians ( \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ), and
 2122 \f$\textrm{votes}\f$ is the value of accumulator.
 2123 @param rho Distance resolution of the accumulator in pixels.
 2124 @param theta Angle resolution of the accumulator in radians.
 2125 @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
 2126 votes ( \f$>\texttt{threshold}\f$ ).
 2127 @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho.
 2128 The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
 2129 rho/srn. If both srn=0 and stn=0, the classical Hough transform is used. Otherwise, both these
 2130 parameters should be positive.
 2131 @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
 2132 @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
 2133 Must fall between 0 and max_theta.
 2134 @param max_theta For standard and multi-scale Hough transform, an upper bound for the angle.
 2135 Must fall between min_theta and CV_PI. The actual maximum angle in the accumulator may be slightly
 2136 less than max_theta, depending on the parameters min_theta and theta.
 2137  */
 2138 CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines,
 2139                               double rho, double theta, int threshold,
 2140                               double srn = 0, double stn = 0,
 2141                               double min_theta = 0, double max_theta = CV_PI );
 2143 /** @brief Finds line segments in a binary image using the probabilistic Hough transform.
 2145 The function implements the probabilistic Hough transform algorithm for line detection, described
 2146 in @cite Matas00
 2148 See the line detection example below:
 2149 @include snippets/imgproc_HoughLinesP.cpp
 2150 This is a sample picture the function parameters have been tuned for:
 2152 ![image](pics/building.jpg)
 2154 And this is the output of the above program in case of the probabilistic Hough transform:
 2156 ![image](pics/houghp.png)
 2158 @param image 8-bit, single-channel binary source image. The image may be modified by the function.
 2159 @param lines Output vector of lines. Each line is represented by a 4-element vector
 2160 \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected
 2161 line segment.
 2162 @param rho Distance resolution of the accumulator in pixels.
 2163 @param theta Angle resolution of the accumulator in radians.
 2164 @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
 2165 votes ( \f$>\texttt{threshold}\f$ ).
 2166 @param minLineLength Minimum line length. Line segments shorter than that are rejected.
 2167 @param maxLineGap Maximum allowed gap between points on the same line to link them.
 2169 @sa LineSegmentDetector
 2170  */
 2171 CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines,
 2172                                double rho, double theta, int threshold,
 2173                                double minLineLength = 0, double maxLineGap = 0 );
 2175 /** @brief Finds lines in a set of points using the standard Hough transform.
 2177 The function finds lines in a set of points using a modification of the Hough transform.
 2178 @include snippets/imgproc_HoughLinesPointSet.cpp
 2179 @param point Input vector of points. Each vector must be encoded as a Point vector \f$(x,y)\f$. Type must be CV_32FC2 or CV_32SC2.
 2180 @param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> \f$(votes, rho, theta)\f$.
 2181 The larger the value of 'votes', the higher the reliability of the Hough line.
 2182 @param lines_max Max count of Hough lines.
 2183 @param threshold %Accumulator threshold parameter. Only those lines are returned that get enough
 2184 votes ( \f$>\texttt{threshold}\f$ ).
 2185 @param min_rho Minimum value for \f$\rho\f$ for the accumulator (Note: \f$\rho\f$ can be negative. The absolute value \f$|\rho|\f$ is the distance of a line to the origin.).
 2186 @param max_rho Maximum value for \f$\rho\f$ for the accumulator.
 2187 @param rho_step Distance resolution of the accumulator.
 2188 @param min_theta Minimum angle value of the accumulator in radians.
 2189 @param max_theta Upper bound for the angle value of the accumulator in radians. The actual maximum
 2190 angle may be slightly less than max_theta, depending on the parameters min_theta and theta_step.
 2191 @param theta_step Angle resolution of the accumulator in radians.
 2192  */
 2193 CV_EXPORTS_W void HoughLinesPointSet( InputArray point, OutputArray lines, int lines_max, int threshold,
 2194                                       double min_rho, double max_rho, double rho_step,
 2195                                       double min_theta, double max_theta, double theta_step );
 2197 /** @example samples/cpp/tutorial_code/ImgTrans/houghcircles.cpp
 2198 An example using the Hough circle detector
 2199 */
 2201 /** @brief Finds circles in a grayscale image using the Hough transform.
 2203 The function finds circles in a grayscale image using a modification of the Hough transform.
 2205 Example: :
 2206 @include snippets/imgproc_HoughLinesCircles.cpp
 2208 @note Usually the function detects the centers of circles well. However, it may fail to find correct
 2209 radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
 2210 you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
 2211 to return centers only without radius search, and find the correct radius using an additional procedure.
 2213 It also helps to smooth image a bit unless it's already soft. For example,
 2214 GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
 2216 @param image 8-bit, single-channel, grayscale input image.
 2217 @param circles Output vector of found circles. Each vector is encoded as  3 or 4 element
 2218 floating-point vector \f$(x, y, radius)\f$ or \f$(x, y, radius, votes)\f$ .
 2219 @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
 2220 @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
 2221 dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
 2222 half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
 2223 unless some small very circles need to be detected.
 2224 @param minDist Minimum distance between the centers of the detected circles. If the parameter is
 2225 too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
 2226 too large, some circles may be missed.
 2227 @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
 2228 it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
 2229 Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
 2230 shough normally be higher, such as 300 or normally exposed and contrasty images.
 2231 @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
 2232 accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
 2233 false circles may be detected. Circles, corresponding to the larger accumulator values, will be
 2234 returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
 2235 The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
 2236 If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
 2237 But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
 2238 @param minRadius Minimum circle radius.
 2239 @param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
 2240 centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
 2242 @sa fitEllipse, minEnclosingCircle
 2243  */
 2244 CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,
 2245                                int method, double dp, double minDist,
 2246                                double param1 = 100, double param2 = 100,
 2247                                int minRadius = 0, int maxRadius = 0 );
 2249 //! @} imgproc_feature
 2251 //! @addtogroup imgproc_filter
 2252 //! @{
 2254 /** @example samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp
 2255 Advanced morphology Transformations sample code
 2256 ![Sample screenshot](Morphology_2_Tutorial_Result.jpg)
 2257 Check @ref tutorial_opening_closing_hats "the corresponding tutorial" for more details
 2258 */
 2260 /** @brief Erodes an image by using a specific structuring element.
 2262 The function erodes the source image using the specified structuring element that determines the
 2263 shape of a pixel neighborhood over which the minimum is taken:
 2265 \f[\texttt{dst} (x,y) =  \min _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
 2267 The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
 2268 case of multi-channel images, each channel is processed independently.
 2270 @param src input image; the number of channels can be arbitrary, but the depth should be one of
 2271 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
 2272 @param dst output image of the same size and type as src.
 2273 @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
 2274 structuring element is used. Kernel can be created using #getStructuringElement.
 2275 @param anchor position of the anchor within the element; default value (-1, -1) means that the
 2276 anchor is at the element center.
 2277 @param iterations number of times erosion is applied.
 2278 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 2279 @param borderValue border value in case of a constant border
 2280 @sa  dilate, morphologyEx, getStructuringElement
 2281  */
 2282 CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel,
 2283                          Point anchor = Point(-1,-1), int iterations = 1,
 2284                          int borderType = BORDER_CONSTANT,
 2285                          const Scalar& borderValue = morphologyDefaultBorderValue() );
 2287 /** @example samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp
 2288 Erosion and Dilation sample code
 2289 ![Sample Screenshot-Erosion](Morphology_1_Tutorial_Erosion_Result.jpg)![Sample Screenshot-Dilation](Morphology_1_Tutorial_Dilation_Result.jpg)
 2290 Check @ref tutorial_erosion_dilatation "the corresponding tutorial" for more details
 2291 */
 2293 /** @brief Dilates an image by using a specific structuring element.
 2295 The function dilates the source image using the specified structuring element that determines the
 2296 shape of a pixel neighborhood over which the maximum is taken:
 2297 \f[\texttt{dst} (x,y) =  \max _{(x',y'):  \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f]
 2299 The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
 2300 case of multi-channel images, each channel is processed independently.
 2302 @param src input image; the number of channels can be arbitrary, but the depth should be one of
 2303 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
 2304 @param dst output image of the same size and type as src.
 2305 @param kernel structuring element used for dilation; if element=Mat(), a 3 x 3 rectangular
 2306 structuring element is used. Kernel can be created using #getStructuringElement
 2307 @param anchor position of the anchor within the element; default value (-1, -1) means that the
 2308 anchor is at the element center.
 2309 @param iterations number of times dilation is applied.
 2310 @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
 2311 @param borderValue border value in case of a constant border
 2312 @sa  erode, morphologyEx, getStructuringElement
 2313  */
 2314 CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel,
 2315                           Point anchor = Point(-1,-1), int iterations = 1,
 2316                           int borderType = BORDER_CONSTANT,
 2317                           const Scalar& borderValue = morphologyDefaultBorderValue() );
 2319 /** @brief Performs advanced morphological transformations.
 2321 The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
 2322 basic operations.
 2324 Any of the operations can be done in-place. In case of multi-channel images, each channel is
 2325 processed independently.
 2327 @param src Source image. The number of channels can be arbitrary. The depth should be one of
 2328 CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
 2329 @param dst Destination image of the same size and type as source image.
 2330 @param op Type of a morphological operation, see #MorphTypes
 2331 @param kernel Structuring element. It can be created using #getStructuringElement.
 2332 @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
 2333 kernel center.
 2334 @param iterations Number of times erosion and dilation are applied.
 2335 @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
 2336 @param borderValue Border value in case of a constant border. The default value has a special
 2337 meaning.
 2338 @sa  dilate, erode, getStructuringElement
 2339 @note The number of iterations is the number of times erosion or dilatation operation will be applied.
 2340 For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
 2341 successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
 2342  */
 2343 CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst,
 2344                                 int op, InputArray kernel,
 2345                                 Point anchor = Point(-1,-1), int iterations = 1,
 2346                                 int borderType = BORDER_CONSTANT,
 2347                                 const Scalar& borderValue = morphologyDefaultBorderValue() );
 2349 //! @} imgproc_filter
 2351 //! @addtogroup imgproc_transform
 2352 //! @{
 2354 /** @brief Resizes an image.
 2356 The function resize resizes the image src down to or up to the specified size. Note that the
 2357 initial dst type or size are not taken into account. Instead, the size and type are derived from
 2358 the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
 2359 you may call the function as follows:
 2360 @code
 2361     // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
 2362     resize(src, dst, dst.size(), 0, 0, interpolation);
 2363 @endcode
 2364 If you want to decimate the image by factor of 2 in each direction, you can call the function this
 2365 way:
 2366 @code
 2367     // specify fx and fy and let the function compute the destination image size.
 2368     resize(src, dst, Size(), 0.5, 0.5, interpolation);
 2369 @endcode
 2370 To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
 2371 enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
 2372 (faster but still looks OK).
 2374 @param src input image.
 2375 @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
 2376 src.size(), fx, and fy; the type of dst is the same as of src.
 2377 @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
 2378  \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f]
 2379  Either dsize or both fx and fy must be non-zero.
 2380 @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
 2381 \f[\texttt{(double)dsize.width/src.cols}\f]
 2382 @param fy scale factor along the vertical axis; when it equals 0, it is computed as
 2383 \f[\texttt{(double)dsize.height/src.rows}\f]
 2384 @param interpolation interpolation method, see #InterpolationFlags
 2386 @sa  warpAffine, warpPerspective, remap
 2387  */
 2388 CV_EXPORTS_W void resize( InputArray src, OutputArray dst,
 2389                           Size dsize, double fx = 0, double fy = 0,
 2390                           int interpolation = INTER_LINEAR );
 2392 /** @brief Applies an affine transformation to an image.
 2394 The function warpAffine transforms the source image using the specified matrix:
 2396 \f[\texttt{dst} (x,y) =  \texttt{src} ( \texttt{M} _{11} x +  \texttt{M} _{12} y +  \texttt{M} _{13}, \texttt{M} _{21} x +  \texttt{M} _{22} y +  \texttt{M} _{23})\f]
 2398 when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
 2399 with #invertAffineTransform and then put in the formula above instead of M. The function cannot
 2400 operate in-place.
 2402 @param src input image.
 2403 @param dst output image that has the size dsize and the same type as src .
 2404 @param M \f$2\times 3\f$ transformation matrix.
 2405 @param dsize size of the output image.
 2406 @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
 2407 flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
 2408 \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
 2409 @param borderMode pixel extrapolation method (see #BorderTypes); when
 2410 borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
 2411 the "outliers" in the source image are not modified by the function.
 2412 @param borderValue value used in case of a constant border; by default, it is 0.
 2414 @sa  warpPerspective, resize, remap, getRectSubPix, transform
 2415  */
 2416 CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst,
 2417                               InputArray M, Size dsize,
 2418                               int flags = INTER_LINEAR,
 2419                               int borderMode = BORDER_CONSTANT,
 2420                               const Scalar& borderValue = Scalar());
 2422 /** @example samples/cpp/warpPerspective_demo.cpp
 2423 An example program shows using cv::getPerspectiveTransform and cv::warpPerspective for image warping
 2424 */
 2426 /** @brief Applies a perspective transformation to an image.
 2428 The function warpPerspective transforms the source image using the specified matrix:
 2430 \f[\texttt{dst} (x,y) =  \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
 2431      \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f]
 2433 when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
 2434 and then put in the formula above instead of M. The function cannot operate in-place.
 2436 @param src input image.
 2437 @param dst output image that has the size dsize and the same type as src .
 2438 @param M \f$3\times 3\f$ transformation matrix.
 2439 @param dsize size of the output image.
 2440 @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
 2441 optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
 2442 \f$\texttt{dst}\rightarrow\texttt{src}\f$ ).
 2443 @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
 2444 @param borderValue value used in case of a constant border; by default, it equals 0.
 2446 @sa  warpAffine, resize, remap, getRectSubPix, perspectiveTransform
 2447  */
 2448 CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst,
 2449                                    InputArray M, Size dsize,
 2450                                    int flags = INTER_LINEAR,
 2451                                    int borderMode = BORDER_CONSTANT,
 2452                                    const Scalar& borderValue = Scalar());
 2454 /** @brief Applies a generic geometrical transformation to an image.
 2456 The function remap transforms the source image using the specified map:
 2458 \f[\texttt{dst} (x,y) =  \texttt{src} (map_x(x,y),map_y(x,y))\f]
 2460 where values of pixels with non-integer coordinates are computed using one of available
 2461 interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps
 2462 in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in
 2463 \f$map_1\f$, or fixed-point maps created by using #convertMaps. The reason you might want to
 2464 convert from floating to fixed-point representations of a map is that they can yield much faster
 2465 (\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x),
 2466 cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients.
 2468 This function cannot operate in-place.
 2470 @param src Source image.
 2471 @param dst Destination image. It has the same size as map1 and the same type as src .
 2472 @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
 2473 CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
 2474 representation to fixed-point for speed.
 2475 @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
 2476 if map1 is (x,y) points), respectively.
 2477 @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
 2478 and #INTER_LINEAR_EXACT are not supported by this function.
 2479 @param borderMode Pixel extrapolation method (see #BorderTypes). When
 2480 borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
 2481 corresponds to the "outliers" in the source image are not modified by the function.
 2482 @param borderValue Value used in case of a constant border. By default, it is 0.
 2483 @note
 2484 Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
 2485  */
 2486 CV_EXPORTS_W void remap( InputArray src, OutputArray dst,
 2487                          InputArray map1, InputArray map2,
 2488                          int interpolation, int borderMode = BORDER_CONSTANT,
 2489                          const Scalar& borderValue = Scalar());
 2491 /** @brief Converts image transformation maps from one representation to another.
 2493 The function converts a pair of maps for remap from one representation to another. The following
 2494 options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are
 2495 supported:
 2497 - \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the
 2498 most frequently used conversion operation, in which the original floating-point maps (see #remap)
 2499 are converted to a more compact and much faster fixed-point representation. The first output array
 2500 contains the rounded coordinates and the second array (created only when nninterpolation=false )
 2501 contains indices in the interpolation tables.
 2503 - \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but
 2504 the original maps are stored in one 2-channel matrix.
 2506 - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
 2507 as the originals.
 2509 @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
 2510 @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
 2511 respectively.
 2512 @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
 2513 @param dstmap2 The second output map.
 2514 @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
 2515 CV_32FC2 .
 2516 @param nninterpolation Flag indicating whether the fixed-point maps are used for the
 2517 nearest-neighbor or for a more complex interpolation.
 2519 @sa  remap, undistort, initUndistortRectifyMap
 2520  */
 2521 CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2,
 2522                                OutputArray dstmap1, OutputArray dstmap2,
 2523                                int dstmap1type, bool nninterpolation = false );
 2525 /** @brief Calculates an affine matrix of 2D rotation.
 2527 The function calculates the following matrix:
 2529 \f[\begin{bmatrix} \alpha &  \beta & (1- \alpha )  \cdot \texttt{center.x} -  \beta \cdot \texttt{center.y} \\ - \beta &  \alpha &  \beta \cdot \texttt{center.x} + (1- \alpha )  \cdot \texttt{center.y} \end{bmatrix}\f]
 2531 where
 2533 \f[\begin{array}{l} \alpha =  \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta =  \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f]
 2535 The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
 2537 @param center Center of the rotation in the source image.
 2538 @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
 2539 coordinate origin is assumed to be the top-left corner).
 2540 @param scale Isotropic scale factor.
 2542 @sa  getAffineTransform, warpAffine, transform
 2543  */
 2544 CV_EXPORTS_W Mat getRotationMatrix2D(Point2f center, double angle, double scale);
 2546 /** @sa getRotationMatrix2D */
 2547 CV_EXPORTS Matx23d getRotationMatrix2D_(Point2f center, double angle, double scale);
 2549 inline
 2550 Mat getRotationMatrix2D(Point2f center, double angle, double scale)
 2551  {
 2552     return Mat(getRotationMatrix2D_(center, angle, scale), true);
 2553  }
 2555 /** @brief Calculates an affine transform from three pairs of the corresponding points.
 2557 The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that:
 2559 \f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
 2561 where
 2563 \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f]
 2565 @param src Coordinates of triangle vertices in the source image.
 2566 @param dst Coordinates of the corresponding triangle vertices in the destination image.
 2568 @sa  warpAffine, transform
 2569  */
 2570 CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] );
 2572 /** @brief Inverts an affine transformation.
 2574 The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M:
 2576 \f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f]
 2578 The result is also a \f$2 \times 3\f$ matrix of the same type as M.
 2580 @param M Original affine transformation.
 2581 @param iM Output reverse affine transformation.
 2582  */
 2583 CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM );
 2585 /** @brief Calculates a perspective transform from four pairs of the corresponding points.
 2587 The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that:
 2589 \f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f]
 2591 where
 2593 \f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f]
 2595 @param src Coordinates of quadrangle vertices in the source image.
 2596 @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
 2597 @param solveMethod method passed to cv::solve (#DecompTypes)
 2599 @sa  findHomography, warpPerspective, perspectiveTransform
 2600  */
 2601 CV_EXPORTS_W Mat getPerspectiveTransform(InputArray src, InputArray dst, int solveMethod = DECOMP_LU);
 2603 /** @overload */
 2604 CV_EXPORTS Mat getPerspectiveTransform(const Point2f src[], const Point2f dst[], int solveMethod = DECOMP_LU);
 2607 CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst );
 2609 /** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy.
 2611 The function getRectSubPix extracts pixels from src:
 2613 \f[patch(x, y) = src(x +  \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y +  \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f]
 2615 where the values of the pixels at non-integer coordinates are retrieved using bilinear
 2616 interpolation. Every channel of multi-channel images is processed independently. Also
 2617 the image should be a single channel or three channel image. While the center of the
 2618 rectangle must be inside the image, parts of the rectangle may be outside.
 2620 @param image Source image.
 2621 @param patchSize Size of the extracted patch.
 2622 @param center Floating point coordinates of the center of the extracted rectangle within the
 2623 source image. The center must be inside the image.
 2624 @param patch Extracted patch that has the size patchSize and the same number of channels as src .
 2625 @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
 2627 @sa  warpAffine, warpPerspective
 2628  */
 2629 CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize,
 2630                                  Point2f center, OutputArray patch, int patchType = -1 );
 2632 /** @example samples/cpp/polar_transforms.cpp
 2633 An example using the cv::linearPolar and cv::logPolar operations
 2634 */
 2636 /** @brief Remaps an image to semilog-polar coordinates space.
 2638 @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
 2640 @internal
 2641 Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image d)"):
 2642 \f[\begin{array}{l}
 2643   dst( \rho , \phi ) = src(x,y) \\
 2644   dst.size() \leftarrow src.size()
 2645 \end{array}\f]
 2647 where
 2648 \f[\begin{array}{l}
 2649   I = (dx,dy) = (x - center.x,y - center.y) \\
 2650   \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
 2651   \phi = Kangle \cdot \texttt{angle} (I) \\
 2652 \end{array}\f]
 2654 and
 2655 \f[\begin{array}{l}
 2656   M = src.cols / log_e(maxRadius) \\
 2657   Kangle = src.rows / 2\Pi \\
 2658 \end{array}\f]
 2660 The function emulates the human "foveal" vision and can be used for fast scale and
 2661 rotation-invariant template matching, for object tracking and so forth.
 2662 @param src Source image
 2663 @param dst Destination image. It will have same size and type as src.
 2664 @param center The transformation center; where the output precision is maximal
 2665 @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
 2666 @param flags A combination of interpolation methods, see #InterpolationFlags
 2668 @note
 2669 -   The function can not operate in-place.
 2670 -   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
 2672 @sa cv::linearPolar
 2673 @endinternal
 2674 */
 2675 CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst,
 2676                             Point2f center, double M, int flags );
 2678 /** @brief Remaps an image to polar coordinates space.
 2680 @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
 2682 @internal
 2683 Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image c)"):
 2684 \f[\begin{array}{l}
 2685   dst( \rho , \phi ) = src(x,y) \\
 2686   dst.size() \leftarrow src.size()
 2687 \end{array}\f]
 2689 where
 2690 \f[\begin{array}{l}
 2691   I = (dx,dy) = (x - center.x,y - center.y) \\
 2692   \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
 2693   \phi = angle \cdot \texttt{angle} (I)
 2694 \end{array}\f]
 2696 and
 2697 \f[\begin{array}{l}
 2698   Kx = src.cols / maxRadius \\
 2699   Ky = src.rows / 2\Pi
 2700 \end{array}\f]
 2703 @param src Source image
 2704 @param dst Destination image. It will have same size and type as src.
 2705 @param center The transformation center;
 2706 @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
 2707 @param flags A combination of interpolation methods, see #InterpolationFlags
 2709 @note
 2710 -   The function can not operate in-place.
 2711 -   To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
 2713 @sa cv::logPolar
 2714 @endinternal
 2715 */
 2716 CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst,
 2717                                Point2f center, double maxRadius, int flags );
 2720 /** \brief Remaps an image to polar or semilog-polar coordinates space
 2722 @anchor polar_remaps_reference_image
 2723 ![Polar remaps reference](pics/polar_remap_doc.png)
 2725 Transform the source image using the following transformation:
 2726 \f[
 2727 dst(\rho , \phi ) = src(x,y)
 2728 \f]
 2730 where
 2731 \f[
 2732 \begin{array}{l}
 2733 \vec{I} = (x - center.x, \;y - center.y) \\
 2734 \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
 2735 \rho = \left\{\begin{matrix}
 2736 Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
 2737 Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
 2738 \end{matrix}\right.
 2739 \end{array}
 2740 \f]
 2742 and
 2743 \f[
 2744 \begin{array}{l}
 2745 Kangle = dsize.height / 2\Pi \\
 2746 Klin = dsize.width / maxRadius \\
 2747 Klog = dsize.width / log_e(maxRadius) \\
 2748 \end{array}
 2749 \f]
 2752 \par Linear vs semilog mapping
 2754 Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
 2756 Linear is the default mode.
 2758 The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
 2759 in contrast to peripheral vision where acuity is minor.
 2761 \par Option on `dsize`:
 2763 - if both values in `dsize <=0 ` (default),
 2764 the destination image will have (almost) same area of source bounding circle:
 2765 \f[\begin{array}{l}
 2766 dsize.area  \leftarrow (maxRadius^2 \cdot \Pi) \\
 2767 dsize.width = \texttt{cvRound}(maxRadius) \\
 2768 dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
 2769 \end{array}\f]
 2772 - if only `dsize.height <= 0`,
 2773 the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
 2774 \f[\begin{array}{l}
 2775 dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
 2776 \end{array}
 2777 \f]
 2779 - if both values in `dsize > 0 `,
 2780 the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
 2783 \par Reverse mapping
 2785 You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
 2786 \snippet polar_transforms.cpp InverseMap
 2788 In addiction, to calculate the original coordinate from a polar mapped coordinate \f$(rho, phi)->(x, y)\f$:
 2789 \snippet polar_transforms.cpp InverseCoordinate
 2791 @param src Source image.
 2792 @param dst Destination image. It will have same type as src.
 2793 @param dsize The destination image size (see description for valid options).
 2794 @param center The transformation center.
 2795 @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
 2796 @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
 2797             - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
 2798             - Add #WARP_POLAR_LOG to select semilog polar mapping
 2799             - Add #WARP_INVERSE_MAP for reverse mapping.
 2800 @note
 2801 -  The function can not operate in-place.
 2802 -  To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
 2803 -  This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
 2805 @sa cv::remap
 2806 */
 2807 CV_EXPORTS_W void warpPolar(InputArray src, OutputArray dst, Size dsize,
 2808                             Point2f center, double maxRadius, int flags);
 2811 //! @} imgproc_transform
 2813 //! @addtogroup imgproc_misc
 2814 //! @{
 2816 /** @brief Calculates the integral of an image.
 2818 The function calculates one or more integral images for the source image as follows:
 2820 \f[\texttt{sum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)\f]
 2822 \f[\texttt{sqsum} (X,Y) =  \sum _{x<X,y<Y}  \texttt{image} (x,y)^2\f]
 2824 \f[\texttt{tilted} (X,Y) =  \sum _{y<Y,abs(x-X+1) \leq Y-y-1}  \texttt{image} (x,y)\f]
 2826 Using these integral images, you can calculate sum, mean, and standard deviation over a specific
 2827 up-right or rotated rectangular region of the image in a constant time, for example:
 2829 \f[\sum _{x_1 \leq x < x_2,  \, y_1  \leq y < y_2}  \texttt{image} (x,y) =  \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)\f]
 2831 It makes possible to do a fast blurring or fast block correlation with a variable window size, for
 2832 example. In case of multi-channel images, sums for each channel are accumulated independently.
 2834 As a practical example, the next figure shows the calculation of the integral of a straight
 2835 rectangle Rect(4,4,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
 2836 original image are shown, as well as the relative pixels in the integral images sum and tilted .
 2838 ![integral calculation example](pics/integral.png)
 2840 @param src input image as \f$W \times H\f$, 8-bit or floating-point (32f or 64f).
 2841 @param sum integral image as \f$(W+1)\times (H+1)\f$ , 32-bit integer or floating-point (32f or 64f).
 2842 @param sqsum integral image for squared pixel values; it is \f$(W+1)\times (H+1)\f$, double-precision
 2843 floating-point (64f) array.
 2844 @param tilted integral for the image rotated by 45 degrees; it is \f$(W+1)\times (H+1)\f$ array with
 2845 the same data type as sum.
 2846 @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
 2847 CV_64F.
 2848 @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
 2849  */
 2850 CV_EXPORTS_AS(integral3) void integral( InputArray src, OutputArray sum,
 2851                                         OutputArray sqsum, OutputArray tilted,
 2852                                         int sdepth = -1, int sqdepth = -1 );
 2854 /** @overload */
 2855 CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 );
 2857 /** @overload */
 2858 CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
 2859                                         OutputArray sqsum, int sdepth = -1, int sqdepth = -1 );
 2861 //! @} imgproc_misc
 2863 //! @addtogroup imgproc_motion
 2864 //! @{
 2866 /** @brief Adds an image to the accumulator image.
 2868 The function adds src or some of its elements to dst :
 2870 \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
 2872 The function supports multi-channel images. Each channel is processed independently.
 2874 The function cv::accumulate can be used, for example, to collect statistics of a scene background
 2875 viewed by a still camera and for the further foreground-background segmentation.
 2877 @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
 2878 @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
 2879 @param mask Optional operation mask.
 2881 @sa  accumulateSquare, accumulateProduct, accumulateWeighted
 2882  */
 2883 CV_EXPORTS_W void accumulate( InputArray src, InputOutputArray dst,
 2884                               InputArray mask = noArray() );
 2886 /** @brief Adds the square of a source image to the accumulator image.
 2888 The function adds the input image src or its selected region, raised to a power of 2, to the
 2889 accumulator dst :
 2891 \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src} (x,y)^2  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
 2893 The function supports multi-channel images. Each channel is processed independently.
 2895 @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
 2896 @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
 2897 floating-point.
 2898 @param mask Optional operation mask.
 2900 @sa  accumulateSquare, accumulateProduct, accumulateWeighted
 2901  */
 2902 CV_EXPORTS_W void accumulateSquare( InputArray src, InputOutputArray dst,
 2903                                     InputArray mask = noArray() );
 2905 /** @brief Adds the per-element product of two input images to the accumulator image.
 2907 The function adds the product of two images or their selected regions to the accumulator dst :
 2909 \f[\texttt{dst} (x,y)  \leftarrow \texttt{dst} (x,y) +  \texttt{src1} (x,y)  \cdot \texttt{src2} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
 2911 The function supports multi-channel images. Each channel is processed independently.
 2913 @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
 2914 @param src2 Second input image of the same type and the same size as src1 .
 2915 @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
 2916 floating-point.
 2917 @param mask Optional operation mask.
 2919 @sa  accumulate, accumulateSquare, accumulateWeighted
 2920  */
 2921 CV_EXPORTS_W void accumulateProduct( InputArray src1, InputArray src2,
 2922                                      InputOutputArray dst, InputArray mask=noArray() );
 2924 /** @brief Updates a running average.
 2926 The function calculates the weighted sum of the input image src and the accumulator dst so that dst
 2927 becomes a running average of a frame sequence:
 2929 \f[\texttt{dst} (x,y)  \leftarrow (1- \texttt{alpha} )  \cdot \texttt{dst} (x,y) +  \texttt{alpha} \cdot \texttt{src} (x,y)  \quad \text{if} \quad \texttt{mask} (x,y)  \ne 0\f]
 2931 That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
 2932 The function supports multi-channel images. Each channel is processed independently.
 2934 @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
 2935 @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
 2936 floating-point.
 2937 @param alpha Weight of the input image.
 2938 @param mask Optional operation mask.
 2940 @sa  accumulate, accumulateSquare, accumulateProduct
 2941  */
 2942 CV_EXPORTS_W void accumulateWeighted( InputArray src, InputOutputArray dst,
 2943                                       double alpha, InputArray mask = noArray() );
 2945 /** @brief The function is used to detect translational shifts that occur between two images.
 2947 The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
 2948 the frequency domain. It can be used for fast image registration as well as motion estimation. For
 2949 more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
 2951 Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
 2952 with getOptimalDFTSize.
 2954 The function performs the following equations:
 2955 - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
 2956 image to remove possible edge effects. This window is cached until the array size changes to speed
 2957 up processing time.
 2958 - Next it computes the forward DFTs of each source array:
 2959 \f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f]
 2960 where \f$\mathcal{F}\f$ is the forward DFT.
 2961 - It then computes the cross-power spectrum of each frequency domain array:
 2962 \f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f]
 2963 - Next the cross-correlation is converted back into the time domain via the inverse DFT:
 2964 \f[r = \mathcal{F}^{-1}\{R\}\f]
 2965 - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
 2966 achieve sub-pixel accuracy.
 2967 \f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f]
 2968 - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
 2969 centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
 2970 peak) and will be smaller when there are multiple peaks.
 2972 @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
 2973 @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
 2974 @param window Floating point array with windowing coefficients to reduce edge effects (optional).
 2975 @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
 2976 @returns detected phase shift (sub-pixel) between the two arrays.
 2978 @sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow
 2979  */
 2980 CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2,
 2981                                     InputArray window = noArray(), CV_OUT double* response = 0);
 2983 /** @brief This function computes a Hanning window coefficients in two dimensions.
 2985 See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
 2986 for more information.
 2988 An example is shown below:
 2989 @code
 2990     // create hanning window of size 100x100 and type CV_32F
 2991     Mat hann;
 2992     createHanningWindow(hann, Size(100, 100), CV_32F);
 2993 @endcode
 2994 @param dst Destination array to place Hann coefficients in
 2995 @param winSize The window size specifications (both width and height must be > 1)
 2996 @param type Created array type
 2997  */
 2998 CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type);
 3000 /** @brief Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
 3002 The function cv::divSpectrums performs the per-element division of the first array by the second array.
 3003 The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
 3005 @param a first input array.
 3006 @param b second input array of the same size and type as src1 .
 3007 @param c output array of the same size and type as src1 .
 3008 @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
 3009 each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
 3010 @param conjB optional flag that conjugates the second input array before the multiplication (true)
 3011 or not (false).
 3012 */
 3013 CV_EXPORTS_W void divSpectrums(InputArray a, InputArray b, OutputArray c,
 3014                                int flags, bool conjB = false);
 3016 //! @} imgproc_motion
 3018 //! @addtogroup imgproc_misc
 3019 //! @{
 3021 /** @brief Applies a fixed-level threshold to each array element.
 3023 The function applies fixed-level thresholding to a multiple-channel array. The function is typically
 3024 used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
 3025 this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
 3026 values. There are several types of thresholding supported by the function. They are determined by
 3027 type parameter.
 3029 Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
 3030 above values. In these cases, the function determines the optimal threshold value using the Otsu's
 3031 or Triangle algorithm and uses it instead of the specified thresh.
 3033 @note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
 3035 @param src input array (multiple-channel, 8-bit or 32-bit floating point).
 3036 @param dst output array of the same size  and type and the same number of channels as src.
 3037 @param thresh threshold value.
 3038 @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
 3039 types.
 3040 @param type thresholding type (see #ThresholdTypes).
 3041 @return the computed threshold value if Otsu's or Triangle methods used.
 3043 @sa  adaptiveThreshold, findContours, compare, min, max
 3044  */
 3045 CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
 3046                                double thresh, double maxval, int type );
 3049 /** @brief Applies an adaptive threshold to an array.
 3051 The function transforms a grayscale image to a binary image according to the formulae:
 3052 -   **THRESH_BINARY**
 3053     \f[dst(x,y) =  \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f]
 3054 -   **THRESH_BINARY_INV**
 3055     \f[dst(x,y) =  \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f]
 3056 where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
 3058 The function can process the image in-place.
 3060 @param src Source 8-bit single-channel image.
 3061 @param dst Destination image of the same size and the same type as src.
 3062 @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
 3063 @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
 3064 The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
 3065 @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
 3066 see #ThresholdTypes.
 3067 @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
 3068 pixel: 3, 5, 7, and so on.
 3069 @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
 3070 is positive but may be zero or negative as well.
 3072 @sa  threshold, blur, GaussianBlur
 3073  */
 3074 CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst,
 3075                                      double maxValue, int adaptiveMethod,
 3076                                      int thresholdType, int blockSize, double C );
 3078 //! @} imgproc_misc
 3080 //! @addtogroup imgproc_filter
 3081 //! @{
 3083 /** @example samples/cpp/tutorial_code/ImgProc/Pyramids/Pyramids.cpp
 3084 An example using pyrDown and pyrUp functions
 3085 */
 3087 /** @brief Blurs an image and downsamples it.
 3089 By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
 3090 any case, the following conditions should be satisfied:
 3092 \f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f]
 3094 The function performs the downsampling step of the Gaussian pyramid construction. First, it
 3095 convolves the source image with the kernel:
 3097 \f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1  \\ 4 & 16 & 24 & 16 & 4  \\ 6 & 24 & 36 & 24 & 6  \\ 4 & 16 & 24 & 16 & 4  \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f]
 3099 Then, it downsamples the image by rejecting even rows and columns.
 3101 @param src input image.
 3102 @param dst output image; it has the specified size and the same type as src.
 3103 @param dstsize size of the output image.
 3104 @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
 3105  */
 3106 CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst,
 3107                            const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
 3109 /** @brief Upsamples an image and then blurs it.
 3111 By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
 3112 case, the following conditions should be satisfied:
 3114 \f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq  ( \texttt{dstsize.width}   \mod  2)  \\ | \texttt{dstsize.height} -src.rows*2| \leq  ( \texttt{dstsize.height}   \mod  2) \end{array}\f]
 3116 The function performs the upsampling step of the Gaussian pyramid construction, though it can
 3117 actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
 3118 injecting even zero rows and columns and then convolves the result with the same kernel as in
 3119 pyrDown multiplied by 4.
 3121 @param src input image.
 3122 @param dst output image. It has the specified size and the same type as src .
 3123 @param dstsize size of the output image.
 3124 @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
 3125  */
 3126 CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst,
 3127                          const Size& dstsize = Size(), int borderType = BORDER_DEFAULT );
 3129 /** @brief Constructs the Gaussian pyramid for an image.
 3131 The function constructs a vector of images and builds the Gaussian pyramid by recursively applying
 3132 pyrDown to the previously built pyramid layers, starting from `dst[0]==src`.
 3134 @param src Source image. Check pyrDown for the list of supported types.
 3135 @param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the
 3136 same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on.
 3137 @param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative.
 3138 @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
 3139  */
 3140 CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst,
 3141                               int maxlevel, int borderType = BORDER_DEFAULT );
 3143 //! @} imgproc_filter
 3145 //! @addtogroup imgproc_hist
 3146 //! @{
 3148 /** @example samples/cpp/demhist.cpp
 3149 An example for creating histograms of an image
 3150 */
 3152 /** @brief Calculates a histogram of a set of arrays.
 3154 The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
 3155 to increment a histogram bin are taken from the corresponding input arrays at the same location. The
 3156 sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
 3157 @include snippets/imgproc_calcHist.cpp
 3159 @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
 3160 size. Each of them can have an arbitrary number of channels.
 3161 @param nimages Number of source images.
 3162 @param channels List of the dims channels used to compute the histogram. The first array channels
 3163 are numerated from 0 to images[0].channels()-1 , the second array channels are counted from
 3164 images[0].channels() to images[0].channels() + images[1].channels()-1, and so on.
 3165 @param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size
 3166 as images[i] . The non-zero mask elements mark the array elements counted in the histogram.
 3167 @param hist Output histogram, which is a dense or sparse dims -dimensional array.
 3168 @param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS
 3169 (equal to 32 in the current OpenCV version).
 3170 @param histSize Array of histogram sizes in each dimension.
 3171 @param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the
 3172 histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower
 3173 (inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary
 3174 \f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a
 3175 uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform (
 3176 uniform=false ), then each of ranges[i] contains histSize[i]+1 elements:
 3177 \f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$
 3178 . The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not
 3179 counted in the histogram.
 3180 @param uniform Flag indicating whether the histogram is uniform or not (see above).
 3181 @param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning
 3182 when it is allocated. This feature enables you to compute a single histogram from several sets of
 3183 arrays, or to update the histogram in time.
 3184 */
 3185 CV_EXPORTS void calcHist( const Mat* images, int nimages,
 3186                           const int* channels, InputArray mask,
 3187                           OutputArray hist, int dims, const int* histSize,
 3188                           const float** ranges, bool uniform = true, bool accumulate = false );
 3190 /** @overload
 3192 this variant uses %SparseMat for output
 3193 */
 3194 CV_EXPORTS void calcHist( const Mat* images, int nimages,
 3195                           const int* channels, InputArray mask,
 3196                           SparseMat& hist, int dims,
 3197                           const int* histSize, const float** ranges,
 3198                           bool uniform = true, bool accumulate = false );
 3200 /** @overload
 3202 this variant supports only uniform histograms.
 3204 ranges argument is either empty vector or a flattened vector of histSize.size()*2 elements
 3205 (histSize.size() element pairs). The first and second elements of each pair specify the lower and
 3206 upper boundaries.
 3207 */
 3208 CV_EXPORTS_W void calcHist( InputArrayOfArrays images,
 3209                             const std::vector<int>& channels,
 3210                             InputArray mask, OutputArray hist,
 3211                             const std::vector<int>& histSize,
 3212                             const std::vector<float>& ranges,
 3213                             bool accumulate = false );
 3215 /** @brief Calculates the back projection of a histogram.
 3217 The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to
 3218 #calcHist , at each location (x, y) the function collects the values from the selected channels
 3219 in the input images and finds the corresponding histogram bin. But instead of incrementing it, the
 3220 function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of
 3221 statistics, the function computes probability of each element value in respect with the empirical
 3222 probability distribution represented by the histogram. See how, for example, you can find and track
 3223 a bright-colored object in a scene:
 3225 - Before tracking, show the object to the camera so that it covers almost the whole frame.
 3226 Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant
 3227 colors in the object.
 3229 - When tracking, calculate a back projection of a hue plane of each input video frame using that
 3230 pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make
 3231 sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels.
 3233 - Find connected components in the resulting picture and choose, for example, the largest
 3234 component.
 3236 This is an approximate algorithm of the CamShift color object tracker.
 3238 @param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
 3239 size. Each of them can have an arbitrary number of channels.
 3240 @param nimages Number of source images.
 3241 @param channels The list of channels used to compute the back projection. The number of channels
 3242 must match the histogram dimensionality. The first array channels are numerated from 0 to
 3243 images[0].channels()-1 , the second array channels are counted from images[0].channels() to
 3244 images[0].channels() + images[1].channels()-1, and so on.
 3245 @param hist Input histogram that can be dense or sparse.
 3246 @param backProject Destination back projection array that is a single-channel array of the same
 3247 size and depth as images[0] .
 3248 @param ranges Array of arrays of the histogram bin boundaries in each dimension. See #calcHist .
 3249 @param scale Optional scale factor for the output back projection.
 3250 @param uniform Flag indicating whether the histogram is uniform or not (see above).
 3252 @sa calcHist, compareHist
 3253  */
 3254 CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
 3255                                  const int* channels, InputArray hist,
 3256                                  OutputArray backProject, const float** ranges,
 3257                                  double scale = 1, bool uniform = true );
 3259 /** @overload */
 3260 CV_EXPORTS void calcBackProject( const Mat* images, int nimages,
 3261                                  const int* channels, const SparseMat& hist,
 3262                                  OutputArray backProject, const float** ranges,
 3263                                  double scale = 1, bool uniform = true );
 3265 /** @overload */
 3266 CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
 3267                                    InputArray hist, OutputArray dst,
 3268                                    const std::vector<float>& ranges,
 3269                                    double scale );
 3271 /** @brief Compares two histograms.
 3273 The function cv::compareHist compares two dense or two sparse histograms using the specified method.
 3275 The function returns \f$d(H_1, H_2)\f$ .
 3277 While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
 3278 for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
 3279 problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
 3280 or more general sparse configurations of weighted points, consider using the #EMD function.
 3282 @param H1 First compared histogram.
 3283 @param H2 Second compared histogram of the same size as H1 .
 3284 @param method Comparison method, see #HistCompMethods
 3285  */
 3286 CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method );
 3288 /** @overload */
 3289 CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method );
 3291 /** @brief Equalizes the histogram of a grayscale image.
 3293 The function equalizes the histogram of the input image using the following algorithm:
 3295 - Calculate the histogram \f$H\f$ for src .
 3296 - Normalize the histogram so that the sum of histogram bins is 255.
 3297 - Compute the integral of the histogram:
 3298 \f[H'_i =  \sum _{0  \le j < i} H(j)\f]
 3299 - Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$
 3301 The algorithm normalizes the brightness and increases the contrast of the image.
 3303 @param src Source 8-bit single channel image.
 3304 @param dst Destination image of the same size and type as src .
 3305  */
 3306 CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
 3308 /** @brief Creates a smart pointer to a cv::CLAHE class and initializes it.
 3310 @param clipLimit Threshold for contrast limiting.
 3311 @param tileGridSize Size of grid for histogram equalization. Input image will be divided into
 3312 equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
 3313  */
 3314 CV_EXPORTS_W Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
 3316 /** @brief Computes the "minimal work" distance between two weighted point configurations.
 3318 The function computes the earth mover distance and/or a lower boundary of the distance between the
 3319 two weighted point configurations. One of the applications described in @cite RubnerSept98,
 3320 @cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
 3321 problem that is solved using some modification of a simplex algorithm, thus the complexity is
 3322 exponential in the worst case, though, on average it is much faster. In the case of a real metric
 3323 the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
 3324 to determine roughly whether the two signatures are far enough so that they cannot relate to the
 3325 same object.
 3327 @param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix.
 3328 Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
 3329 a single column (weights only) if the user-defined cost matrix is used. The weights must be
 3330 non-negative and have at least one non-zero value.
 3331 @param signature2 Second signature of the same format as signature1 , though the number of rows
 3332 may be different. The total weights may be different. In this case an extra "dummy" point is added
 3333 to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
 3334 value.
 3335 @param distType Used metric. See #DistanceTypes.
 3336 @param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix
 3337 is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
 3338 @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
 3339 signatures that is a distance between mass centers. The lower boundary may not be calculated if
 3340 the user-defined cost matrix is used, the total weights of point configurations are not equal, or
 3341 if the signatures consist of weights only (the signature matrices have a single column). You
 3342 **must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
 3343 equal to \*lowerBound (it means that the signatures are far enough), the function does not
 3344 calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
 3345 return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
 3346 should be set to 0.
 3347 @param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is
 3348 a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 .
 3349  */
 3350 CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
 3351                       int distType, InputArray cost=noArray(),
 3352                       float* lowerBound = 0, OutputArray flow = noArray() );
 3354 CV_EXPORTS_AS(EMD) float wrapperEMD( InputArray signature1, InputArray signature2,
 3355                       int distType, InputArray cost=noArray(),
 3356                       CV_IN_OUT Ptr<float> lowerBound = Ptr<float>(), OutputArray flow = noArray() );
 3358 //! @} imgproc_hist
 3360 //! @addtogroup imgproc_segmentation
 3361 //! @{
 3363 /** @example samples/cpp/watershed.cpp
 3364 An example using the watershed algorithm
 3365 */
 3367 /** @brief Performs a marker-based image segmentation using the watershed algorithm.
 3369 The function implements one of the variants of watershed, non-parametric marker-based segmentation
 3370 algorithm, described in @cite Meyer92 .
 3372 Before passing the image to the function, you have to roughly outline the desired regions in the
 3373 image markers with positive (\>0) indices. So, every region is represented as one or more connected
 3374 components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
 3375 mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
 3376 the future image regions. All the other pixels in markers , whose relation to the outlined regions
 3377 is not known and should be defined by the algorithm, should be set to 0's. In the function output,
 3378 each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
 3379 regions.
 3381 @note Any two neighbor connected components are not necessarily separated by a watershed boundary
 3382 (-1's pixels); for example, they can touch each other in the initial marker image passed to the
 3383 function.
 3385 @param image Input 8-bit 3-channel image.
 3386 @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
 3387 size as image .
 3389 @sa findContours
 3390  */
 3391 CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers );
 3393 //! @} imgproc_segmentation
 3395 //! @addtogroup imgproc_filter
 3396 //! @{
 3398 /** @brief Performs initial step of meanshift segmentation of an image.
 3400 The function implements the filtering stage of meanshift segmentation, that is, the output of the
 3401 function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
 3402 At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
 3403 meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
 3404 considered:
 3406 \f[(x,y): X- \texttt{sp} \le x  \le X+ \texttt{sp} , Y- \texttt{sp} \le y  \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)||   \le \texttt{sr}\f]
 3408 where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
 3409 (though, the algorithm does not depend on the color space used, so any 3-component color space can
 3410 be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
 3411 (R',G',B') are found and they act as the neighborhood center on the next iteration:
 3413 \f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f]
 3415 After the iterations over, the color components of the initial pixel (that is, the pixel from where
 3416 the iterations started) are set to the final value (average color at the last iteration):
 3418 \f[I(X,Y) <- (R*,G*,B*)\f]
 3420 When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
 3421 run on the smallest layer first. After that, the results are propagated to the larger layer and the
 3422 iterations are run again only on those pixels where the layer colors differ by more than sr from the
 3423 lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
 3424 results will be actually different from the ones obtained by running the meanshift procedure on the
 3425 whole original image (i.e. when maxLevel==0).
 3427 @param src The source 8-bit, 3-channel image.
 3428 @param dst The destination image of the same format and the same size as the source.
 3429 @param sp The spatial window radius.
 3430 @param sr The color window radius.
 3431 @param maxLevel Maximum level of the pyramid for the segmentation.
 3432 @param termcrit Termination criteria: when to stop meanshift iterations.
 3433  */
 3434 CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst,
 3435                                          double sp, double sr, int maxLevel = 1,
 3436                                          TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) );
 3438 //! @}
 3440 //! @addtogroup imgproc_segmentation
 3441 //! @{
 3443 /** @example samples/cpp/grabcut.cpp
 3444 An example using the GrabCut algorithm
 3445 ![Sample Screenshot](grabcut_output1.jpg)
 3446 */
 3448 /** @brief Runs the GrabCut algorithm.
 3450 The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
 3452 @param img Input 8-bit 3-channel image.
 3453 @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
 3454 mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
 3455 @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
 3456 "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
 3457 @param bgdModel Temporary array for the background model. Do not modify it while you are
 3458 processing the same image.
 3459 @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
 3460 processing the same image.
 3461 @param iterCount Number of iterations the algorithm should make before returning the result. Note
 3462 that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
 3463 mode==GC_EVAL .
 3464 @param mode Operation mode that could be one of the #GrabCutModes
 3465  */
 3466 CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect,
 3467                            InputOutputArray bgdModel, InputOutputArray fgdModel,
 3468                            int iterCount, int mode = GC_EVAL );
 3470 //! @} imgproc_segmentation
 3472 //! @addtogroup imgproc_misc
 3473 //! @{
 3475 /** @example samples/cpp/distrans.cpp
 3476 An example on using the distance transform
 3477 */
 3479 /** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
 3481 The function cv::distanceTransform calculates the approximate or precise distance from every binary
 3482 image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
 3484 When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
 3485 algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library.
 3487 In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function
 3488 finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
 3489 diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall
 3490 distance is calculated as a sum of these basic distances. Since the distance function should be
 3491 symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
 3492 the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
 3493 same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
 3494 precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
 3495 relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
 3496 uses the values suggested in the original paper:
 3497 - DIST_L1: `a = 1, b = 2`
 3498 - DIST_L2:
 3499     - `3 x 3`: `a=0.955, b=1.3693`
 3500     - `5 x 5`: `a=1, b=1.4, c=2.1969`
 3501 - DIST_C: `a = 1, b = 1`
 3503 Typically, for a fast, coarse distance estimation #DIST_L2, a \f$3\times 3\f$ mask is used. For a
 3504 more accurate distance estimation #DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used.
 3505 Note that both the precise and the approximate algorithms are linear on the number of pixels.
 3507 This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$
 3508 but also identifies the nearest connected component consisting of zero pixels
 3509 (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
 3510 component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
 3511 automatically finds connected components of zero pixels in the input image and marks them with
 3512 distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
 3513 marks all the zero pixels with distinct labels.
 3515 In this mode, the complexity is still linear. That is, the function provides a very fast way to
 3516 compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
 3517 approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
 3518 yet.
 3520 @param src 8-bit, single-channel (binary) source image.
 3521 @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
 3522 single-channel image of the same size as src.
 3523 @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
 3524 CV_32SC1 and the same size as src.
 3525 @param distanceType Type of distance, see #DistanceTypes
 3526 @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
 3527 #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
 3528 the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times
 3529 5\f$ or any larger aperture.
 3530 @param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
 3531  */
 3532 CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst,
 3533                                      OutputArray labels, int distanceType, int maskSize,
 3534                                      int labelType = DIST_LABEL_CCOMP );
 3536 /** @overload
 3537 @param src 8-bit, single-channel (binary) source image.
 3538 @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
 3539 single-channel image of the same size as src .
 3540 @param distanceType Type of distance, see #DistanceTypes
 3541 @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
 3542 #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives
 3543 the same result as \f$5\times 5\f$ or any larger aperture.
 3544 @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
 3545 the first variant of the function and distanceType == #DIST_L1.
 3546 */
 3547 CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst,
 3548                                      int distanceType, int maskSize, int dstType=CV_32F);
 3550 /** @brief Fills a connected component with the given color.
 3552 The function cv::floodFill fills a connected component starting from the seed point with the specified
 3553 color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
 3554 pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
 3556 - in case of a grayscale image and floating range
 3557 \f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} (x',y')+ \texttt{upDiff}\f]
 3560 - in case of a grayscale image and fixed range
 3561 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y)  \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f]
 3564 - in case of a color image and floating range
 3565 \f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f]
 3566 \f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f]
 3567 and
 3568 \f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f]
 3571 - in case of a color image and fixed range
 3572 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f]
 3573 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f]
 3574 and
 3575 \f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f]
 3578 where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the
 3579 component. That is, to be added to the connected component, a color/brightness of the pixel should
 3580 be close enough to:
 3581 - Color/brightness of one of its neighbors that already belong to the connected component in case
 3582 of a floating range.
 3583 - Color/brightness of the seed point in case of a fixed range.
 3585 Use these functions to either mark a connected component with the specified color in-place, or build
 3586 a mask and then extract the contour, or copy the region to another image, and so on.
 3588 @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
 3589 function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
 3590 the details below.
 3591 @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
 3592 taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
 3593 input and output parameter, you must take responsibility of initializing it.
 3594 Flood-filling cannot go across non-zero pixels in the input mask. For example,
 3595 an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
 3596 mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
 3597 as described below. Additionally, the function fills the border of the mask with ones to simplify
 3598 internal processing. It is therefore possible to use the same mask in multiple calls to the function
 3599 to make sure the filled areas do not overlap.
 3600 @param seedPoint Starting point.
 3601 @param newVal New value of the repainted domain pixels.
 3602 @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
 3603 one of its neighbors belonging to the component, or a seed pixel being added to the component.
 3604 @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
 3605 one of its neighbors belonging to the component, or a seed pixel being added to the component.
 3606 @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
 3607 repainted domain.
 3608 @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
 3609 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
 3610 connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
 3611 will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
 3612 the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
 3613 neighbours and fill the mask with a value of 255. The following additional options occupy higher
 3614 bits and therefore may be further combined with the connectivity and mask fill values using
 3615 bit-wise or (|), see #FloodFillFlags.
 3617 @note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the
 3618 pixel \f$(x+1, y+1)\f$ in the mask .
 3620 @sa findContours
 3621  */
 3622 CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask,
 3623                             Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0,
 3624                             Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
 3625                             int flags = 4 );
 3627 /** @example samples/cpp/ffilldemo.cpp
 3628 An example using the FloodFill technique
 3629 */
 3631 /** @overload
 3633 variant without `mask` parameter
 3634 */
 3635 CV_EXPORTS int floodFill( InputOutputArray image,
 3636                           Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0,
 3637                           Scalar loDiff = Scalar(), Scalar upDiff = Scalar(),
 3638                           int flags = 4 );
 3640 //! Performs linear blending of two images:
 3641 //! \f[ \texttt{dst}(i,j) = \texttt{weights1}(i,j)*\texttt{src1}(i,j) + \texttt{weights2}(i,j)*\texttt{src2}(i,j) \f]
 3642 //! @param src1 It has a type of CV_8UC(n) or CV_32FC(n), where n is a positive integer.
 3643 //! @param src2 It has the same type and size as src1.
 3644 //! @param weights1 It has a type of CV_32FC1 and the same size with src1.
 3645 //! @param weights2 It has a type of CV_32FC1 and the same size with src1.
 3646 //! @param dst It is created if it does not have the same size and type with src1.
 3647 CV_EXPORTS_W void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst);
 3649 //! @} imgproc_misc
 3651 //! @addtogroup imgproc_color_conversions
 3652 //! @{
 3654 /** @brief Converts an image from one color space to another.
 3656 The function converts an input image from one color space to another. In case of a transformation
 3657 to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
 3658 that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
 3659 bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
 3660 component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
 3661 sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
 3663 The conventional ranges for R, G, and B channel values are:
 3664 -   0 to 255 for CV_8U images
 3665 -   0 to 65535 for CV_16U images
 3666 -   0 to 1 for CV_32F images
 3668 In case of linear transformations, the range does not matter. But in case of a non-linear
 3669 transformation, an input RGB image should be normalized to the proper value range to get the correct
 3670 results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a
 3671 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
 3672 have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
 3673 you need first to scale the image down:
 3674 @code
 3675     img *= 1./255;
 3676     cvtColor(img, img, COLOR_BGR2Luv);
 3677 @endcode
 3678 If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
 3679 applications, this will not be noticeable but it is recommended to use 32-bit images in applications
 3680 that need the full range of colors or that convert an image before an operation and then convert
 3681 back.
 3683 If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
 3684 range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
 3686 @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
 3687 floating-point.
 3688 @param dst output image of the same size and depth as src.
 3689 @param code color space conversion code (see #ColorConversionCodes).
 3690 @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
 3691 channels is derived automatically from src and code.
 3693 @see @ref imgproc_color_conversions
 3694  */
 3695 CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
 3697 /** @brief Converts an image from one color space to another where the source image is
 3698 stored in two planes.
 3700 This function only supports YUV420 to RGB conversion as of now.
 3702 @param src1: 8-bit image (#CV_8U) of the Y plane.
 3703 @param src2: image containing interleaved U/V plane.
 3704 @param dst: output image.
 3705 @param code: Specifies the type of conversion. It can take any of the following values:
 3706 - #COLOR_YUV2BGR_NV12
 3707 - #COLOR_YUV2RGB_NV12
 3708 - #COLOR_YUV2BGRA_NV12
 3709 - #COLOR_YUV2RGBA_NV12
 3710 - #COLOR_YUV2BGR_NV21
 3711 - #COLOR_YUV2RGB_NV21
 3712 - #COLOR_YUV2BGRA_NV21
 3713 - #COLOR_YUV2RGBA_NV21
 3714 */
 3715 CV_EXPORTS_W void cvtColorTwoPlane( InputArray src1, InputArray src2, OutputArray dst, int code );
 3717 /** @brief main function for all demosaicing processes
 3719 @param src input image: 8-bit unsigned or 16-bit unsigned.
 3720 @param dst output image of the same size and depth as src.
 3721 @param code Color space conversion code (see the description below).
 3722 @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
 3723 channels is derived automatically from src and code.
 3725 The function can do the following transformations:
 3727 -   Demosaicing using bilinear interpolation
 3729     #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
 3731     #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
 3733 -   Demosaicing using Variable Number of Gradients.
 3735     #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
 3737 -   Edge-Aware Demosaicing.
 3739     #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
 3741 -   Demosaicing with alpha channel
 3743     #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
 3745 @sa cvtColor
 3746 */
 3747 CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dstCn = 0);
 3749 //! @} imgproc_color_conversions
 3751 //! @addtogroup imgproc_shape
 3752 //! @{
 3754 /** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape.
 3756 The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
 3757 results are returned in the structure cv::Moments.
 3759 @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
 3760 \f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ).
 3761 @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
 3762 used for images only.
 3763 @returns moments.
 3765 @note Only applicable to contour moments calculations from Python bindings: Note that the numpy
 3766 type for the input array should be either np.int32 or np.float32.
 3768 @sa  contourArea, arcLength
 3769  */
 3770 CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false );
 3772 /** @brief Calculates seven Hu invariants.
 3774 The function calculates seven Hu invariants (introduced in @cite Hu62; see also
 3775 <http://en.wikipedia.org/wiki/Image_moment>) defined as:
 3777 \f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f]
 3779 where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ .
 3781 These values are proved to be invariants to the image scale, rotation, and reflection except the
 3782 seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of
 3783 infinite image resolution. In case of raster images, the computed Hu invariants for the original and
 3784 transformed images are a bit different.
 3786 @param moments Input moments computed with moments .
 3787 @param hu Output Hu invariants.
 3789 @sa matchShapes
 3790  */
 3791 CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] );
 3793 /** @overload */
 3794 CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
 3796 //! @} imgproc_shape
 3798 //! @addtogroup imgproc_object
 3799 //! @{
 3801 //! type of the template matching operation
 3802 enum TemplateMatchModes  {
 3803     TM_SQDIFF        = 0, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f]
 3804                                with mask:
 3805                                \f[R(x,y)= \sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
 3806                                   M(x',y') \right)^2\f] */
 3807     TM_SQDIFF_NORMED = 1, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{
 3808                                   x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
 3809                                with mask:
 3810                                \f[R(x,y)= \frac{\sum _{x',y'} \left( (T(x',y')-I(x+x',y+y')) \cdot
 3811                                   M(x',y') \right)^2}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot
 3812                                   M(x',y') \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot
 3813                                   M(x',y') \right)^2}}\f] */
 3814     TM_CCORR         = 2, /*!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f]
 3815                                with mask:
 3816                                \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot M(x',y')
 3817                                   ^2)\f] */
 3818     TM_CCORR_NORMED  = 3, /*!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{
 3819                                   \sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f]
 3820                                with mask:
 3821                                \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y') \cdot
 3822                                   M(x',y')^2)}{\sqrt{\sum_{x',y'} \left( T(x',y') \cdot M(x',y')
 3823                                   \right)^2 \cdot \sum_{x',y'} \left( I(x+x',y+y') \cdot M(x',y')
 3824                                   \right)^2}}\f] */
 3825     TM_CCOEFF        = 4, /*!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f]
 3826                                where
 3827                                \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{
 3828                                   x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h)
 3829                                   \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f]
 3830                                with mask:
 3831                                \f[\begin{array}{l} T'(x',y')=M(x',y') \cdot \left( T(x',y') -
 3832                                   \frac{1}{\sum _{x'',y''} M(x'',y'')} \cdot \sum _{x'',y''}
 3833                                   (T(x'',y'') \cdot M(x'',y'')) \right) \\ I'(x+x',y+y')=M(x',y')
 3834                                   \cdot \left( I(x+x',y+y') - \frac{1}{\sum _{x'',y''} M(x'',y'')}
 3835                                   \cdot \sum _{x'',y''} (I(x+x'',y+y'') \cdot M(x'',y'')) \right)
 3836                                   \end{array} \f] */
 3837     TM_CCOEFF_NORMED = 5  /*!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{
 3838                                   \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2}
 3839                                   }\f] */
 3840  };
 3842 /** @example samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp
 3843 An example using Template Matching algorithm
 3844 */
 3846 /** @brief Compares a template against overlapped image regions.
 3848 The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against
 3849 templ using the specified method and stores the comparison results in result . #TemplateMatchModes
 3850 describes the formulae for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$
 3851 template, \f$R\f$ result, \f$M\f$ the optional mask ). The summation is done over template and/or
 3852 the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$
 3854 After the function finishes the comparison, the best matches can be found as global minimums (when
 3855 #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
 3856 #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
 3857 the denominator is done over all of the channels and separate mean values are used for each channel.
 3858 That is, the function can take a color template and a color image. The result will still be a
 3859 single-channel image, which is easier to analyze.
 3861 @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
 3862 @param templ Searched template. It must be not greater than the source image and have the same
 3863 data type.
 3864 @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
 3865 is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ .
 3866 @param method Parameter specifying the comparison method, see #TemplateMatchModes
 3867 @param mask Optional mask. It must have the same size as templ. It must either have the same number
 3868             of channels as template or only one channel, which is then used for all template and
 3869             image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
 3870             meaning only elements where mask is nonzero are used and are kept unchanged independent
 3871             of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
 3872             used as weights. The exact formulas are documented in #TemplateMatchModes.
 3873  */
 3874 CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
 3875                                  OutputArray result, int method, InputArray mask = noArray() );
 3877 //! @}
 3879 //! @addtogroup imgproc_shape
 3880 //! @{
 3882 /** @example samples/cpp/connected_components.cpp
 3883 This program demonstrates connected components and use of the trackbar
 3884 */
 3886 /** @brief computes the connected components labeled image of boolean image
 3888 image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
 3889 represents the background label. ltype specifies the output label image type, an important
 3890 consideration based on the total number of labels or alternatively the total number of pixels in
 3891 the source image. ccltype specifies the connected components labeling algorithm to use, currently
 3892 Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
 3893 are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
 3894 a row major ordering of labels while Spaghetti and BBDT do not.
 3895 This function uses parallel version of the algorithms if at least one allowed
 3896 parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
 3898 @param image the 8-bit single-channel image to be labeled
 3899 @param labels destination labeled image
 3900 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
 3901 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
 3902 @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
 3903 */
 3904 CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels,
 3905                                                                         int connectivity, int ltype, int ccltype);
 3908 /** @overload
 3910 @param image the 8-bit single-channel image to be labeled
 3911 @param labels destination labeled image
 3912 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
 3913 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
 3914 */
 3915 CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels,
 3916                                      int connectivity = 8, int ltype = CV_32S);
 3919 /** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label
 3921 image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
 3922 represents the background label. ltype specifies the output label image type, an important
 3923 consideration based on the total number of labels or alternatively the total number of pixels in
 3924 the source image. ccltype specifies the connected components labeling algorithm to use, currently
 3925 Bolelli (Spaghetti) @cite Bolelli2019, Grana (BBDT) @cite Grana2010 and Wu's (SAUF) @cite Wu2009 algorithms
 3926 are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
 3927 a row major ordering of labels while Spaghetti and BBDT do not.
 3928 This function uses parallel version of the algorithms (statistics included) if at least one allowed
 3929 parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
 3931 @param image the 8-bit single-channel image to be labeled
 3932 @param labels destination labeled image
 3933 @param stats statistics output for each label, including the background label.
 3934 Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
 3935 #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
 3936 @param centroids centroid output for each label, including the background label. Centroids are
 3937 accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
 3938 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
 3939 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
 3940 @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
 3941 */
 3942 CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels,
 3943                                                                                           OutputArray stats, OutputArray centroids,
 3944                                                                                           int connectivity, int ltype, int ccltype);
 3946 /** @overload
 3947 @param image the 8-bit single-channel image to be labeled
 3948 @param labels destination labeled image
 3949 @param stats statistics output for each label, including the background label.
 3950 Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
 3951 #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
 3952 @param centroids centroid output for each label, including the background label. Centroids are
 3953 accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
 3954 @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
 3955 @param ltype output image label type. Currently CV_32S and CV_16U are supported.
 3956 */
 3957 CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels,
 3958                                               OutputArray stats, OutputArray centroids,
 3959                                               int connectivity = 8, int ltype = CV_32S);
 3962 /** @brief Finds contours in a binary image.
 3964 The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours
 3965 are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
 3966 OpenCV sample directory.
 3967 @note Since opencv 3.2 source image is not modified by this function.
 3969 @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
 3970 pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
 3971 #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
 3972 If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
 3973 @param contours Detected contours. Each contour is stored as a vector of points (e.g.
 3974 std::vector<std::vector<cv::Point> >).
 3975 @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
 3976 as many elements as the number of contours. For each i-th contour contours[i], the elements
 3977 hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
 3978 in contours of the next and previous contours at the same hierarchical level, the first child
 3979 contour and the parent contour, respectively. If for the contour i there are no next, previous,
 3980 parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
 3981 @note In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
 3982 @param mode Contour retrieval mode, see #RetrievalModes
 3983 @param method Contour approximation method, see #ContourApproximationModes
 3984 @param offset Optional offset by which every contour point is shifted. This is useful if the
 3985 contours are extracted from the image ROI and then they should be analyzed in the whole image
 3986 context.
 3987  */
 3988 CV_EXPORTS_W void findContours( InputArray image, OutputArrayOfArrays contours,
 3989                               OutputArray hierarchy, int mode,
 3990                               int method, Point offset = Point());
 3992 /** @overload */
 3993 CV_EXPORTS void findContours( InputArray image, OutputArrayOfArrays contours,
 3994                               int mode, int method, Point offset = Point());
 3996 /** @example samples/cpp/squares.cpp
 3997 A program using pyramid scaling, Canny, contours and contour simplification to find
 3998 squares in a list of images (pic1-6.png). Returns sequence of squares detected on the image.
 3999 */
 4001 /** @example samples/tapi/squares.cpp
 4002 A program using pyramid scaling, Canny, contours and contour simplification to find
 4003 squares in the input image.
 4004 */
 4006 /** @brief Approximates a polygonal curve(s) with the specified precision.
 4008 The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
 4009 vertices so that the distance between them is less or equal to the specified precision. It uses the
 4010 Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
 4012 @param curve Input vector of a 2D point stored in std::vector or Mat
 4013 @param approxCurve Result of the approximation. The type should match the type of the input curve.
 4014 @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
 4015 between the original curve and its approximation.
 4016 @param closed If true, the approximated curve is closed (its first and last vertices are
 4017 connected). Otherwise, it is not closed.
 4018  */
 4019 CV_EXPORTS_W void approxPolyDP( InputArray curve,
 4020                                 OutputArray approxCurve,
 4021                                 double epsilon, bool closed );
 4023 /** @brief Calculates a contour perimeter or a curve length.
 4025 The function computes a curve length or a closed contour perimeter.
 4027 @param curve Input vector of 2D points, stored in std::vector or Mat.
 4028 @param closed Flag indicating whether the curve is closed or not.
 4029  */
 4030 CV_EXPORTS_W double arcLength( InputArray curve, bool closed );
 4032 /** @brief Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
 4034 The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
 4035 non-zero pixels of gray-scale image.
 4037 @param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
 4038  */
 4039 CV_EXPORTS_W Rect boundingRect( InputArray array );
 4041 /** @brief Calculates a contour area.
 4043 The function computes a contour area. Similarly to moments , the area is computed using the Green
 4044 formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
 4045 #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
 4046 results for contours with self-intersections.
 4048 Example:
 4049 @code
 4050     vector<Point> contour;
 4051     contour.push_back(Point2f(0, 0));
 4052     contour.push_back(Point2f(10, 0));
 4053     contour.push_back(Point2f(10, 10));
 4054     contour.push_back(Point2f(5, 4));
 4056     double area0 = contourArea(contour);
 4057     vector<Point> approx;
 4058     approxPolyDP(contour, approx, 5, true);
 4059     double area1 = contourArea(approx);
 4061     cout << "area0 =" << area0 << endl <<
 4062             "area1 =" << area1 << endl <<
 4063             "approx poly vertices" << approx.size() << endl;
 4064 @endcode
 4065 @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
 4066 @param oriented Oriented area flag. If it is true, the function returns a signed area value,
 4067 depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
 4068 determine orientation of a contour by taking the sign of an area. By default, the parameter is
 4069 false, which means that the absolute value is returned.
 4070  */
 4071 CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
 4073 /** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
 4075 The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
 4076 specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
 4077 indices when data is close to the containing Mat element boundary.
 4079 @param points Input vector of 2D points, stored in std::vector\<\> or Mat
 4080  */
 4081 CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
 4083 /** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
 4085 The function finds the four vertices of a rotated rectangle. This function is useful to draw the
 4086 rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
 4087 visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
 4089 @param box The input rotated rectangle. It may be the output of @ref minAreaRect.
 4090 @param points The output array of four vertices of rectangles.
 4091  */
 4092 CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points);
 4094 /** @brief Finds a circle of the minimum area enclosing a 2D point set.
 4096 The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
 4098 @param points Input vector of 2D points, stored in std::vector\<\> or Mat
 4099 @param center Output center of the circle.
 4100 @param radius Output radius of the circle.
 4101  */
 4102 CV_EXPORTS_W void minEnclosingCircle( InputArray points,
 4103                                       CV_OUT Point2f& center, CV_OUT float& radius );
 4105 /** @example samples/cpp/minarea.cpp
 4106 */
 4108 /** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area.
 4110 The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
 4111 area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
 4112 *red* and the enclosing triangle in *yellow*.
 4114 ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
 4116 The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's
 4117 @cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal
 4118 enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
 4119 takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
 4120 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which is higher
 4121 than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$.
 4123 @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
 4124 @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
 4125 of the OutputArray must be CV_32F.
 4126  */
 4127 CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
 4129 /** @brief Compares two shapes.
 4131 The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
 4133 @param contour1 First contour or grayscale image.
 4134 @param contour2 Second contour or grayscale image.
 4135 @param method Comparison method, see #ShapeMatchModes
 4136 @param parameter Method-specific parameter (not supported now).
 4137  */
 4138 CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2,
 4139                                  int method, double parameter );
 4141 /** @example samples/cpp/convexhull.cpp
 4142 An example using the convexHull functionality
 4143 */
 4145 /** @brief Finds the convex hull of a point set.
 4147 The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
 4148 that has *O(N logN)* complexity in the current implementation.
 4150 @param points Input 2D point set, stored in std::vector or Mat.
 4151 @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
 4152 the first case, the hull elements are 0-based indices of the convex hull points in the original
 4153 array (since the set of convex hull points is a subset of the original point set). In the second
 4154 case, hull elements are the convex hull points themselves.
 4155 @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
 4156 Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
 4157 to the right, and its Y axis pointing upwards.
 4158 @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
 4159 returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
 4160 output array is std::vector, the flag is ignored, and the output depends on the type of the
 4161 vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
 4162 returnPoints=true.
 4164 @note `points` and `hull` should be different arrays, inplace processing isn't supported.
 4166 Check @ref tutorial_hull "the corresponding tutorial" for more details.
 4168 useful links:
 4170 https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
 4171  */
 4172 CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull,
 4173                               bool clockwise = false, bool returnPoints = true );
 4175 /** @brief Finds the convexity defects of a contour.
 4177 The figure below displays convexity defects of a hand contour:
 4179 ![image](pics/defects.png)
 4181 @param contour Input contour.
 4182 @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
 4183 points that make the hull.
 4184 @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
 4185 interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
 4186 (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
 4187 in the original contour of the convexity defect beginning, end and the farthest point, and
 4188 fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
 4189 farthest contour point and the hull. That is, to get the floating-point value of the depth will be
 4190 fixpt_depth/256.0.
 4191  */
 4192 CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects );
 4194 /** @brief Tests a contour convexity.
 4196 The function tests whether the input contour is convex or not. The contour must be simple, that is,
 4197 without self-intersections. Otherwise, the function output is undefined.
 4199 @param contour Input vector of 2D points, stored in std::vector\<\> or Mat
 4200  */
 4201 CV_EXPORTS_W bool isContourConvex( InputArray contour );
 4203 /** @example samples/cpp/intersectExample.cpp
 4204 Examples of how intersectConvexConvex works
 4205 */
 4207 /** @brief Finds intersection of two convex polygons
 4209 @param p1 First polygon
 4210 @param p2 Second polygon
 4211 @param p12 Output polygon describing the intersecting area
 4212 @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
 4213 When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
 4214 of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
 4216 @returns Absolute value of area of intersecting polygon
 4218 @note intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
 4219  */
 4220 CV_EXPORTS_W float intersectConvexConvex( InputArray p1, InputArray p2,
 4221                                           OutputArray p12, bool handleNested = true );
 4223 /** @example samples/cpp/fitellipse.cpp
 4224 An example using the fitEllipse technique
 4225 */
 4227 /** @brief Fits an ellipse around a set of 2D points.
 4229 The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
 4230 all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95
 4231 is used. Developer should keep in mind that it is possible that the returned
 4232 ellipse/rotatedRect data contains negative indices, due to the data points being close to the
 4233 border of the containing Mat element.
 4235 @param points Input 2D point set, stored in std::vector\<\> or Mat
 4236  */
 4237 CV_EXPORTS_W RotatedRect fitEllipse( InputArray points );
 4239 /** @brief Fits an ellipse around a set of 2D points.
 4241  The function calculates the ellipse that fits a set of 2D points.
 4242  It returns the rotated rectangle in which the ellipse is inscribed.
 4243  The Approximate Mean Square (AMS) proposed by @cite Taubin1991 is used.
 4245  For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
 4246  which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
 4247  However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
 4248  the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
 4249  quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
 4250  If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
 4251  The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
 4252  by imposing the condition that \f$ A^T ( D_x^T D_x  +   D_y^T D_y) A = 1 \f$ where
 4253  the matrices \f$ Dx \f$ and \f$ Dy \f$ are the partial derivatives of the design matrix \f$ D \f$ with
 4254  respect to x and y. The matrices are formed row by row applying the following to
 4255  each of the points in the set:
 4256  \f{align*}{
 4257  D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
 4258  D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
 4259  D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
 4260  \f}
 4261  The AMS method minimizes the cost function
 4262  \f{equation*}{
 4263  \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x +  D_y^T D_y) A^T }
 4264  \f}
 4266  The minimum cost is found by solving the generalized eigenvalue problem.
 4268  \f{equation*}{
 4269  D^T D A = \lambda  \left( D_x^T D_x +  D_y^T D_y\right) A
 4270  \f}
 4272  @param points Input 2D point set, stored in std::vector\<\> or Mat
 4273  */
 4274 CV_EXPORTS_W RotatedRect fitEllipseAMS( InputArray points );
 4277 /** @brief Fits an ellipse around a set of 2D points.
 4279  The function calculates the ellipse that fits a set of 2D points.
 4280  It returns the rotated rectangle in which the ellipse is inscribed.
 4281  The Direct least square (Direct) method by @cite Fitzgibbon1999 is used.
 4283  For an ellipse, this basis set is \f$ \chi= \left(x^2, x y, y^2, x, y, 1\right) \f$,
 4284  which is a set of six free coefficients \f$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} \f$.
 4285  However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths \f$ (a,b) \f$,
 4286  the position \f$ (x_0,y_0) \f$, and the orientation \f$ \theta \f$. This is because the basis set includes lines,
 4287  quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
 4288  The Direct method confines the fit to ellipses by ensuring that \f$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 \f$.
 4289  The condition imposed is that \f$ 4 A_{xx} A_{yy}- A_{xy}^2=1 \f$ which satisfies the inequality
 4290  and as the coefficients can be arbitrarily scaled is not overly restrictive.
 4292  \f{equation*}{
 4293  \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
 4294  0 & 0  & 2  & 0  & 0  &  0  \\
 4295  0 & -1  & 0  & 0  & 0  &  0 \\
 4296  2 & 0  & 0  & 0  & 0  &  0 \\
 4297  0 & 0  & 0  & 0  & 0  &  0 \\
 4298  0 & 0  & 0  & 0  & 0  &  0 \\
 4299  0 & 0  & 0  & 0  & 0  &  0
 4300  \end{matrix} \right)
 4301  \f}
 4303  The minimum cost is found by solving the generalized eigenvalue problem.
 4305  \f{equation*}{
 4306  D^T D A = \lambda  \left( C\right) A
 4307  \f}
 4309  The system produces only one positive eigenvalue \f$ \lambda\f$ which is chosen as the solution
 4310  with its eigenvector \f$\mathbf{u}\f$. These are used to find the coefficients
 4312  \f{equation*}{
 4313  A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}}  \mathbf{u}
 4314  \f}
 4315  The scaling factor guarantees that  \f$A^T C A =1\f$.
 4317  @param points Input 2D point set, stored in std::vector\<\> or Mat
 4318  */
 4319 CV_EXPORTS_W RotatedRect fitEllipseDirect( InputArray points );
 4321 /** @brief Fits a line to a 2D or 3D point set.
 4323 The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where
 4324 \f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one
 4325 of the following:
 4326 -  DIST_L2
 4327 \f[\rho (r) = r^2/2  \quad \text{(the simplest and the fastest least-squares method)}\f]
 4328 - DIST_L1
 4329 \f[\rho (r) = r\f]
 4330 - DIST_L12
 4331 \f[\rho (r) = 2  \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f]
 4332 - DIST_FAIR
 4333 \f[\rho \left (r \right ) = C^2  \cdot \left (  \frac{r}{C} -  \log{\left(1 + \frac{r}{C}\right)} \right )  \quad \text{where} \quad C=1.3998\f]
 4334 - DIST_WELSCH
 4335 \f[\rho \left (r \right ) =  \frac{C^2}{2} \cdot \left ( 1 -  \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right )  \quad \text{where} \quad C=2.9846\f]
 4336 - DIST_HUBER
 4337 \f[\rho (r) =  \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f]
 4339 The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
 4340 that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
 4341 weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ .
 4343 @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
 4344 @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
 4345 (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
 4346 (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
 4347 Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
 4348 and (x0, y0, z0) is a point on the line.
 4349 @param distType Distance used by the M-estimator, see #DistanceTypes
 4350 @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
 4351 is chosen.
 4352 @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
 4353 @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
 4354  */
 4355 CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType,
 4356                            double param, double reps, double aeps );
 4358 /** @brief Performs a point-in-contour test.
 4360 The function determines whether the point is inside a contour, outside, or lies on an edge (or
 4361 coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
 4362 value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
 4363 Otherwise, the return value is a signed distance between the point and the nearest contour edge.
 4365 See below a sample output of the function where each image pixel is tested against the contour:
 4367 ![sample output](pics/pointpolygon.png)
 4369 @param contour Input contour.
 4370 @param pt Point tested against the contour.
 4371 @param measureDist If true, the function estimates the signed distance from the point to the
 4372 nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
 4373  */
 4374 CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist );
 4376 /** @brief Finds out if there is any intersection between two rotated rectangles.
 4378 If there is then the vertices of the intersecting region are returned as well.
 4380 Below are some examples of intersection configurations. The hatched pattern indicates the
 4381 intersecting region and the red vertices are returned by the function.
 4383 ![intersection examples](pics/intersection.png)
 4385 @param rect1 First rectangle
 4386 @param rect2 Second rectangle
 4387 @param intersectingRegion The output array of the vertices of the intersecting region. It returns
 4388 at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
 4389 @returns One of #RectanglesIntersectTypes
 4390  */
 4391 CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion  );
 4393 /** @brief Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
 4394 */
 4395 CV_EXPORTS_W Ptr<GeneralizedHoughBallard> createGeneralizedHoughBallard();
 4397 /** @brief Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
 4398 */
 4399 CV_EXPORTS_W Ptr<GeneralizedHoughGuil> createGeneralizedHoughGuil();
 4401 //! @} imgproc_shape
 4403 //! @addtogroup imgproc_colormap
 4404 //! @{
 4406 //! GNU Octave/MATLAB equivalent colormaps
 4407 enum ColormapTypes
 4408  {
 4409     COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg)
 4410     COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg)
 4411     COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg)
 4412     COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg)
 4413     COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg)
 4414     COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg)
 4415     COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg)
 4416     COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg)
 4417     COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg)
 4418     COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg)
 4419     COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg)
 4420     COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg)
 4421     COLORMAP_PARULA = 12, //!< ![parula](pics/colormaps/colorscale_parula.jpg)
 4422     COLORMAP_MAGMA = 13, //!< ![magma](pics/colormaps/colorscale_magma.jpg)
 4423     COLORMAP_INFERNO = 14, //!< ![inferno](pics/colormaps/colorscale_inferno.jpg)
 4424     COLORMAP_PLASMA = 15, //!< ![plasma](pics/colormaps/colorscale_plasma.jpg)
 4425     COLORMAP_VIRIDIS = 16, //!< ![viridis](pics/colormaps/colorscale_viridis.jpg)
 4426     COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
 4427     COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
 4428     COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
 4429     COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
 4430     COLORMAP_DEEPGREEN = 21  //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
 4431  };
 4433 /** @example samples/cpp/falsecolor.cpp
 4434 An example using applyColorMap function
 4435 */
 4437 /** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image.
 4439 @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
 4440 @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
 4441 @param colormap The colormap to apply, see #ColormapTypes
 4442 */
 4443 CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
 4445 /** @brief Applies a user colormap on a given image.
 4447 @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
 4448 @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
 4449 @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
 4450 */
 4451 CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, InputArray userColor);
 4453 //! @} imgproc_colormap
 4455 //! @addtogroup imgproc_draw
 4456 //! @{
 4459 /** OpenCV color channel order is BGR[A] */
 4460 #define CV_RGB(r, g, b)  cv::Scalar((b), (g), (r), 0)
 4462 /** @brief Draws a line segment connecting two points.
 4464 The function line draws the line segment between pt1 and pt2 points in the image. The line is
 4465 clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
 4466 or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
 4467 lines are drawn using Gaussian filtering.
 4469 @param img Image.
 4470 @param pt1 First point of the line segment.
 4471 @param pt2 Second point of the line segment.
 4472 @param color Line color.
 4473 @param thickness Line thickness.
 4474 @param lineType Type of the line. See #LineTypes.
 4475 @param shift Number of fractional bits in the point coordinates.
 4476  */
 4477 CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
 4478                      int thickness = 1, int lineType = LINE_8, int shift = 0);
 4480 /** @brief Draws an arrow segment pointing from the first point to the second one.
 4482 The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
 4484 @param img Image.
 4485 @param pt1 The point the arrow starts from.
 4486 @param pt2 The point the arrow points to.
 4487 @param color Line color.
 4488 @param thickness Line thickness.
 4489 @param line_type Type of the line. See #LineTypes
 4490 @param shift Number of fractional bits in the point coordinates.
 4491 @param tipLength The length of the arrow tip in relation to the arrow length
 4492  */
 4493 CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color,
 4494                      int thickness=1, int line_type=8, int shift=0, double tipLength=0.1);
 4496 /** @brief Draws a simple, thick, or filled up-right rectangle.
 4498 The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
 4499 are pt1 and pt2.
 4501 @param img Image.
 4502 @param pt1 Vertex of the rectangle.
 4503 @param pt2 Vertex of the rectangle opposite to pt1 .
 4504 @param color Rectangle color or brightness (grayscale image).
 4505 @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
 4506 mean that the function has to draw a filled rectangle.
 4507 @param lineType Type of the line. See #LineTypes
 4508 @param shift Number of fractional bits in the point coordinates.
 4509  */
 4510 CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2,
 4511                           const Scalar& color, int thickness = 1,
 4512                           int lineType = LINE_8, int shift = 0);
 4514 /** @overload
 4516 use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
 4517 r.br()-Point(1,1)` are opposite corners
 4518 */
 4519 CV_EXPORTS_W void rectangle(InputOutputArray img, Rect rec,
 4520                           const Scalar& color, int thickness = 1,
 4521                           int lineType = LINE_8, int shift = 0);
 4523 /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_2.cpp
 4524 An example using drawing functions
 4525 */
 4527 /** @brief Draws a circle.
 4529 The function cv::circle draws a simple or filled circle with a given center and radius.
 4530 @param img Image where the circle is drawn.
 4531 @param center Center of the circle.
 4532 @param radius Radius of the circle.
 4533 @param color Circle color.
 4534 @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
 4535 mean that a filled circle is to be drawn.
 4536 @param lineType Type of the circle boundary. See #LineTypes
 4537 @param shift Number of fractional bits in the coordinates of the center and in the radius value.
 4538  */
 4539 CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
 4540                        const Scalar& color, int thickness = 1,
 4541                        int lineType = LINE_8, int shift = 0);
 4543 /** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
 4545 The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
 4546 arc, or a filled ellipse sector. The drawing code uses general parametric form.
 4547 A piecewise-linear curve is used to approximate the elliptic arc
 4548 boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
 4549 #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
 4550 variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
 4551 `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
 4552 the meaning of the parameters to draw the blue arc.
 4554 ![Parameters of Elliptic Arc](pics/ellipse.svg)
 4556 @param img Image.
 4557 @param center Center of the ellipse.
 4558 @param axes Half of the size of the ellipse main axes.
 4559 @param angle Ellipse rotation angle in degrees.
 4560 @param startAngle Starting angle of the elliptic arc in degrees.
 4561 @param endAngle Ending angle of the elliptic arc in degrees.
 4562 @param color Ellipse color.
 4563 @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
 4564 a filled ellipse sector is to be drawn.
 4565 @param lineType Type of the ellipse boundary. See #LineTypes
 4566 @param shift Number of fractional bits in the coordinates of the center and values of axes.
 4567  */
 4568 CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes,
 4569                         double angle, double startAngle, double endAngle,
 4570                         const Scalar& color, int thickness = 1,
 4571                         int lineType = LINE_8, int shift = 0);
 4573 /** @overload
 4574 @param img Image.
 4575 @param box Alternative ellipse representation via RotatedRect. This means that the function draws
 4576 an ellipse inscribed in the rotated rectangle.
 4577 @param color Ellipse color.
 4578 @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
 4579 a filled ellipse sector is to be drawn.
 4580 @param lineType Type of the ellipse boundary. See #LineTypes
 4581 */
 4582 CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color,
 4583                         int thickness = 1, int lineType = LINE_8);
 4585 /* ----------------------------------------------------------------------------------------- */
 4586 /* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */
 4587 /* ----------------------------------------------------------------------------------------- */
 4589 /** @brief Draws a marker on a predefined position in an image.
 4591 The function cv::drawMarker draws a marker on a given position in the image. For the moment several
 4592 marker types are supported, see #MarkerTypes for more information.
 4594 @param img Image.
 4595 @param position The point where the crosshair is positioned.
 4596 @param color Line color.
 4597 @param markerType The specific type of marker you want to use, see #MarkerTypes
 4598 @param thickness Line thickness.
 4599 @param line_type Type of the line, See #LineTypes
 4600 @param markerSize The length of the marker axis [default = 20 pixels]
 4601  */
 4602 CV_EXPORTS_W void drawMarker(InputOutputArray img, Point position, const Scalar& color,
 4603                              int markerType = MARKER_CROSS, int markerSize=20, int thickness=1,
 4604                              int line_type=8);
 4606 /* ----------------------------------------------------------------------------------------- */
 4607 /* END OF MARKER SECTION */
 4608 /* ----------------------------------------------------------------------------------------- */
 4610 /** @brief Fills a convex polygon.
 4612 The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
 4613 function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
 4614 self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
 4615 twice at the most (though, its top-most and/or the bottom edge could be horizontal).
 4617 @param img Image.
 4618 @param points Polygon vertices.
 4619 @param color Polygon color.
 4620 @param lineType Type of the polygon boundaries. See #LineTypes
 4621 @param shift Number of fractional bits in the vertex coordinates.
 4622  */
 4623 CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points,
 4624                                  const Scalar& color, int lineType = LINE_8,
 4625                                  int shift = 0);
 4627 /** @overload */
 4628 CV_EXPORTS void fillConvexPoly(InputOutputArray img, const Point* pts, int npts,
 4629                                const Scalar& color, int lineType = LINE_8,
 4630                                int shift = 0);
 4632 /** @example samples/cpp/tutorial_code/ImgProc/basic_drawing/Drawing_1.cpp
 4633 An example using drawing functions
 4634 Check @ref tutorial_random_generator_and_text "the corresponding tutorial" for more details
 4635 */
 4637 /** @brief Fills the area bounded by one or more polygons.
 4639 The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
 4640 complex areas, for example, areas with holes, contours with self-intersections (some of their
 4641 parts), and so forth.
 4643 @param img Image.
 4644 @param pts Array of polygons where each polygon is represented as an array of points.
 4645 @param color Polygon color.
 4646 @param lineType Type of the polygon boundaries. See #LineTypes
 4647 @param shift Number of fractional bits in the vertex coordinates.
 4648 @param offset Optional offset of all points of the contours.
 4649  */
 4650 CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts,
 4651                            const Scalar& color, int lineType = LINE_8, int shift = 0,
 4652                            Point offset = Point() );
 4654 /** @overload */
 4655 CV_EXPORTS void fillPoly(InputOutputArray img, const Point** pts,
 4656                          const int* npts, int ncontours,
 4657                          const Scalar& color, int lineType = LINE_8, int shift = 0,
 4658                          Point offset = Point() );
 4660 /** @brief Draws several polygonal curves.
 4662 @param img Image.
 4663 @param pts Array of polygonal curves.
 4664 @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
 4665 the function draws a line from the last vertex of each curve to its first vertex.
 4666 @param color Polyline color.
 4667 @param thickness Thickness of the polyline edges.
 4668 @param lineType Type of the line segments. See #LineTypes
 4669 @param shift Number of fractional bits in the vertex coordinates.
 4671 The function cv::polylines draws one or more polygonal curves.
 4672  */
 4673 CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts,
 4674                             bool isClosed, const Scalar& color,
 4675                             int thickness = 1, int lineType = LINE_8, int shift = 0 );
 4677 /** @overload */
 4678 CV_EXPORTS void polylines(InputOutputArray img, const Point* const* pts, const int* npts,
 4679                           int ncontours, bool isClosed, const Scalar& color,
 4680                           int thickness = 1, int lineType = LINE_8, int shift = 0 );
 4682 /** @example samples/cpp/contours2.cpp
 4683 An example program illustrates the use of cv::findContours and cv::drawContours
 4684 \image html WindowsQtContoursOutput.png "Screenshot of the program"
 4685 */
 4687 /** @example samples/cpp/segment_objects.cpp
 4688 An example using drawContours to clean up a background segmentation result
 4689 */
 4691 /** @brief Draws contours outlines or filled contours.
 4693 The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
 4694 bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
 4695 connected components from the binary image and label them: :
 4696 @include snippets/imgproc_drawContours.cpp
 4698 @param image Destination image.
 4699 @param contours All the input contours. Each contour is stored as a point vector.
 4700 @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
 4701 @param color Color of the contours.
 4702 @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
 4703 thickness=#FILLED ), the contour interiors are drawn.
 4704 @param lineType Line connectivity. See #LineTypes
 4705 @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
 4706 some of the contours (see maxLevel ).
 4707 @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
 4708 If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
 4709 draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
 4710 parameter is only taken into account when there is hierarchy available.
 4711 @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
 4712 \f$\texttt{offset}=(dx,dy)\f$ .
 4713 @note When thickness=#FILLED, the function is designed to handle connected components with holes correctly
 4714 even when no hierarchy data is provided. This is done by analyzing all the outlines together
 4715 using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
 4716 contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
 4717 of contours, or iterate over the collection using contourIdx parameter.
 4718  */
 4719 CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours,
 4720                               int contourIdx, const Scalar& color,
 4721                               int thickness = 1, int lineType = LINE_8,
 4722                               InputArray hierarchy = noArray(),
 4723                               int maxLevel = INT_MAX, Point offset = Point() );
 4725 /** @brief Clips the line against the image rectangle.
 4727 The function cv::clipLine calculates a part of the line segment that is entirely within the specified
 4728 rectangle. It returns false if the line segment is completely outside the rectangle. Otherwise,
 4729 it returns true .
 4730 @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
 4731 @param pt1 First line point.
 4732 @param pt2 Second line point.
 4733  */
 4734 CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2);
 4736 /** @overload
 4737 @param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
 4738 @param pt1 First line point.
 4739 @param pt2 Second line point.
 4740 */
 4741 CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2);
 4743 /** @overload
 4744 @param imgRect Image rectangle.
 4745 @param pt1 First line point.
 4746 @param pt2 Second line point.
 4747 */
 4748 CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2);
 4750 /** @brief Approximates an elliptic arc with a polyline.
 4752 The function ellipse2Poly computes the vertices of a polyline that approximates the specified
 4753 elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
 4755 @param center Center of the arc.
 4756 @param axes Half of the size of the ellipse main axes. See #ellipse for details.
 4757 @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
 4758 @param arcStart Starting angle of the elliptic arc in degrees.
 4759 @param arcEnd Ending angle of the elliptic arc in degrees.
 4760 @param delta Angle between the subsequent polyline vertices. It defines the approximation
 4761 accuracy.
 4762 @param pts Output vector of polyline vertices.
 4763  */
 4764 CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle,
 4765                                 int arcStart, int arcEnd, int delta,
 4766                                 CV_OUT std::vector<Point>& pts );
 4768 /** @overload
 4769 @param center Center of the arc.
 4770 @param axes Half of the size of the ellipse main axes. See #ellipse for details.
 4771 @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
 4772 @param arcStart Starting angle of the elliptic arc in degrees.
 4773 @param arcEnd Ending angle of the elliptic arc in degrees.
 4774 @param delta Angle between the subsequent polyline vertices. It defines the approximation accuracy.
 4775 @param pts Output vector of polyline vertices.
 4776 */
 4777 CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle,
 4778                              int arcStart, int arcEnd, int delta,
 4779                              CV_OUT std::vector<Point2d>& pts);
 4781 /** @brief Draws a text string.
 4783 The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
 4784 using the specified font are replaced by question marks. See #getTextSize for a text rendering code
 4785 example.
 4787 @param img Image.
 4788 @param text Text string to be drawn.
 4789 @param org Bottom-left corner of the text string in the image.
 4790 @param fontFace Font type, see #HersheyFonts.
 4791 @param fontScale Font scale factor that is multiplied by the font-specific base size.
 4792 @param color Text color.
 4793 @param thickness Thickness of the lines used to draw a text.
 4794 @param lineType Line type. See #LineTypes
 4795 @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
 4796 it is at the top-left corner.
 4797  */
 4798 CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org,
 4799                          int fontFace, double fontScale, Scalar color,
 4800                          int thickness = 1, int lineType = LINE_8,
 4801                          bool bottomLeftOrigin = false );
 4803 /** @brief Calculates the width and height of a text string.
 4805 The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
 4806 That is, the following code renders some text, the tight box surrounding it, and the baseline: :
 4807 @code
 4808     String text = "Funny text inside the box";
 4809     int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
 4810     double fontScale = 2;
 4811     int thickness = 3;
 4813     Mat img(600, 800, CV_8UC3, Scalar::all(0));
 4815     int baseline=0;
 4816     Size textSize = getTextSize(text, fontFace,
 4817                                 fontScale, thickness, &baseline);
 4818     baseline += thickness;
 4820     // center the text
 4821     Point textOrg((img.cols - textSize.width)/2,
 4822                   (img.rows + textSize.height)/2);
 4824     // draw the box
 4825     rectangle(img, textOrg + Point(0, baseline),
 4826               textOrg + Point(textSize.width, -textSize.height),
 4827               Scalar(0,0,255));
 4828     // ... and the baseline first
 4829     line(img, textOrg + Point(0, thickness),
 4830          textOrg + Point(textSize.width, thickness),
 4831          Scalar(0, 0, 255));
 4833     // then put the text itself
 4834     putText(img, text, textOrg, fontFace, fontScale,
 4835             Scalar::all(255), thickness, 8);
 4836 @endcode
 4838 @param text Input text string.
 4839 @param fontFace Font to use, see #HersheyFonts.
 4840 @param fontScale Font scale factor that is multiplied by the font-specific base size.
 4841 @param thickness Thickness of lines used to render the text. See #putText for details.
 4842 @param[out] baseLine y-coordinate of the baseline relative to the bottom-most text
 4843 point.
 4844 @return The size of a box that contains the specified text.
 4846 @see putText
 4847  */
 4848 CV_EXPORTS_W Size getTextSize(const String& text, int fontFace,
 4849                             double fontScale, int thickness,
 4850                             CV_OUT int* baseLine);
 4853 /** @brief Calculates the font-specific size to use to achieve a given height in pixels.
 4855 @param fontFace Font to use, see cv::HersheyFonts.
 4856 @param pixelHeight Pixel height to compute the fontScale for
 4857 @param thickness Thickness of lines used to render the text.See putText for details.
 4858 @return The fontSize to use for cv::putText
 4860 @see cv::putText
 4861 */
 4862 CV_EXPORTS_W double getFontScaleFromHeight(const int fontFace,
 4863                                            const int pixelHeight,
 4864                                            const int thickness = 1);
 4866 /** @brief Class for iterating over all pixels on a raster line segment.
 4868 The class LineIterator is used to get each pixel of a raster line connecting
 4869 two specified points.
 4870 It can be treated as a versatile implementation of the Bresenham algorithm
 4871 where you can stop at each pixel and do some extra processing, for
 4872 example, grab pixel values along the line or draw a line with an effect
 4873 (for example, with XOR operation).
 4875 The number of pixels along the line is stored in LineIterator::count.
 4876 The method LineIterator::pos returns the current position in the image:
 4878 @code{.cpp}
 4879 // grabs pixels along the line (pt1, pt2)
 4880 // from 8-bit 3-channel image to the buffer
 4881 LineIterator it(img, pt1, pt2, 8);
 4882 LineIterator it2 = it;
 4883 vector<Vec3b> buf(it.count);
 4885 for(int i = 0; i < it.count; i++, ++it)
 4886     buf[i] = *(const Vec3b*)*it;
 4888 // alternative way of iterating through the line
 4889 for(int i = 0; i < it2.count; i++, ++it2)
 4890 {
 4891     Vec3b val = img.at<Vec3b>(it2.pos());
 4892     CV_Assert(buf[i] == val);
 4893 }
 4894 @endcode
 4895 */
 4896 class CV_EXPORTS LineIterator
 4897  {
 4898 public:
 4899     /** @brief Initializes iterator object for the given line and image.
 4901     The returned iterator can be used to traverse all pixels on a line that
 4902     connects the given two points.
 4903     The line will be clipped on the image boundaries.
 4905     @param img Underlying image.
 4906     @param pt1 First endpoint of the line.
 4907     @param pt2 The other endpoint of the line.
 4908     @param connectivity Pixel connectivity of the iterator. Valid values are 4 (iterator can move
 4909     up, down, left and right) and 8 (iterator can also move diagonally).
 4910     @param leftToRight If true, the line is traversed from the leftmost endpoint to the rightmost
 4911     endpoint. Otherwise, the line is traversed from \p pt1 to \p pt2.
 4912     */
 4913     LineIterator( const Mat& img, Point pt1, Point pt2,
 4914                   int connectivity = 8, bool leftToRight = false )
 4915      {
 4916         init(&img, Rect(0, 0, img.cols, img.rows), pt1, pt2, connectivity, leftToRight);
 4917         ptmode = false;
 4918      }
 4919     LineIterator( Point pt1, Point pt2,
 4920                   int connectivity = 8, bool leftToRight = false )
 4921      {
 4922         init(0, Rect(std::min(pt1.x, pt2.x),
 4923                      std::min(pt1.y, pt2.y),
 4924                      std::max(pt1.x, pt2.x) - std::min(pt1.x, pt2.x) + 1,
 4925                      std::max(pt1.y, pt2.y) - std::min(pt1.y, pt2.y) + 1),
 4926              pt1, pt2, connectivity, leftToRight);
 4927         ptmode = true;
 4928      }
 4929     LineIterator( Size boundingAreaSize, Point pt1, Point pt2,
 4930                   int connectivity = 8, bool leftToRight = false )
 4931      {
 4932         init(0, Rect(0, 0, boundingAreaSize.width, boundingAreaSize.height),
 4933              pt1, pt2, connectivity, leftToRight);
 4934         ptmode = true;
 4935      }
 4936     LineIterator( Rect boundingAreaRect, Point pt1, Point pt2,
 4937                   int connectivity = 8, bool leftToRight = false )
 4938      {
 4939         init(0, boundingAreaRect, pt1, pt2, connectivity, leftToRight);
 4940         ptmode = true;
 4941      }
 4942     void init(const Mat* img, Rect boundingAreaRect, Point pt1, Point pt2, int connectivity, bool leftToRight);
 4944     /** @brief Returns pointer to the current pixel.
 4945     */
 4946     uchar* operator *();
 4948     /** @brief Moves iterator to the next pixel on the line.
 4950     This is the prefix version (++it).
 4951     */
 4952     LineIterator& operator ++();
 4954     /** @brief Moves iterator to the next pixel on the line.
 4956     This is the postfix version (it++).
 4957     */
 4958     LineIterator operator ++(int);
 4960     /** @brief Returns coordinates of the current pixel.
 4961     */
 4962     Point pos() const;
 4964     uchar* ptr;
 4965     const uchar* ptr0;
 4966     int step, elemSize;
 4967     int err, count;
 4968     int minusDelta, plusDelta;
 4969     int minusStep, plusStep;
 4970     int minusShift, plusShift;
 4971     Point p;
 4972     bool ptmode;
 4973  };
 4975 //! @cond IGNORED
 4977 // === LineIterator implementation ===
 4979 inline
 4980 uchar* LineIterator::operator *()
 4981  {
 4982     return ptmode ? 0 : ptr;
 4983  }
 4985 inline
 4986 LineIterator& LineIterator::operator ++()
 4987  {
 4988     int mask = err < 0 ? -1 : 0;
 4989     err += minusDelta + (plusDelta & mask);
 4990     if(!ptmode)
 4991      {
 4992         ptr += minusStep + (plusStep & mask);
 4993      }
 4994     else
 4995      {
 4996         p.x += minusShift + (plusShift & mask);
 4997         p.y += minusStep + (plusStep & mask);
 4998      }
 4999     return *this;
 5000  }
 5002 inline
 5003 LineIterator LineIterator::operator ++(int)
 5004  {
 5005     LineIterator it = *this;
 5006     ++(*this);
 5007     return it;
 5008  }
 5010 inline
 5011 Point LineIterator::pos() const
 5012  {
 5013     if(!ptmode)
 5014      {
 5015         size_t offset = (size_t)(ptr - ptr0);
 5016         int y = (int)(offset/step);
 5017         int x = (int)((offset - (size_t)y*step)/elemSize);
 5018         return Point(x, y);
 5019      }
 5020     return p;
 5021  }
 5023 //! @endcond
 5025 //! @} imgproc_draw
 5027 //! @} imgproc
 5029  } // cv