添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

摘要:

日益加剧的环境变化与人类活动严重威胁种群的生存, 因此预测多种胁迫下种群的命运至关重要。种群生存力分析(population viability analysis, PVA)是评估种群所受威胁、灭绝或衰退风险以及恢复可能性的有效方法。基于物种及环境数据和建模, 种群生存力分析能够整合不同类型变量, 为目标物种的保护提供建议。然而, 极小种群野生植物的个体数据难以获取, 种群参数估计困难, 这导致传统种群生存力分析方法在此类种群中的应用存在局限性。在此, 本文提出了极小种群野生植物生存力分析的潜在方法: 小样本非统计分析法及环境变化下的种群适应力分析。小样本非统计分析法有益于提高种群统计学参数的估计精度, 而立足于生态进化生物学的种群生存力研究有助于从生物学机理方面了解和预测种群动态, 为极小种群野生植物的保护提供更适宜的理论指导。

Abstract

Environmental change and anthropogenic disturbance have a significant impact on population persistence. Therefore, it is essential to predict population dynamics under multiple stresses. Population viability analysis (PVA) is an effective method for assessing threats, extinction risk and bottlenecks, and the likelihood of recovery. By combining data and models, PVA accommodates different types of variables and can offer appropriate advice for conservation. However, demographic parameters of Wild Plant with Extremely Small Populations are difficult to estimate, which makes the statistical power of these models quite low. Here, we offer some underlying PVA methods for Wild Plant with Extremely Small Populations using non-statistical theory with small sample sizes and population adaptive potential analysis. Methods based on the non-statistical theory can enhance the accuracy of parameter estimation in small populations, while the eco-evolutionary elements help to uncover mechanisms of population adaptation and predict population dynamics. These methods provide more appropriate guidance for the conservation of Wild Plant with Extremely Small Populations.

Key words: Wild Plant with Extremely Small Populations (WPESP), population viability analysis, non-statistical theory with small sample sizes, adaptive potential

陈冬东, 李镇清 (2020) 极小种群野生植物生存力分析: 方法、问题与展望. 生物多样性, 28, 358-366. DOI: 10.17520/biods.2019179 .

Dongdong Chen, Zhenqing Li (2020) Population viability analysis of Wild Plant with Extremely Small Populations (WPESP): Methods, problems and prospects. Biodiversity Science, 28, 358-366. DOI: 10.17520/biods.2019179 .

影响因素 Factors 对种群的影响 Effects on population
生境变化 Habitat changes
温度/降水的变化
Changes in temperature or precipitation
生境的可利用性、生物物候、种群的生长、繁殖以及迁移
Habitat availability, biological phenology, population growth, reproduction, and migration
生境破碎化
Habitat fragmentation
生存、繁殖、迁移、定植等
Survival, reproduction, migration, colonization, etc.
侵蚀、滑坡、土地利用变化、富营养化
Erosion, landslides, land-use change, and eutrophication
生境的可利用性、植被结构、种间关系
Habitat availability, vegetation structure, and interspecific relationships
人为因素如滥伐、城市化、土地清理等
Artificial impacts such as deforestation, urbanization, land clearing
生境的可利用性、植被结构、生存、繁殖、迁移、定植
Habitat availability, vegetation structure, survival, reproduction, migration, and colonization
生物间互作 Biological interaction
传粉昆虫减少或环境变化导致植物花期与传粉昆虫活动时期不同步
Loss of pollinators or asynchronism between flowering period and pollinators’ activity period caused by environmental change
繁殖
Reproduction
种内竞争、共生生物的选择偏好
Intraspecific competition and preferences of symbiotic organisms
繁殖
Reproduction
外来种的入侵
Invasion of alien species
种间关系、竞争强度、种群对生境的优先权
Interspecies relationships, competition intensity, and population priorities over habitats
植食性动物的迁入
Invasion of herbivores
生长、繁殖
Growth and reproduction
遗传结构改变 Genetic structural changes
种群数量少, 分布范围狭窄
Small population and narrow distribution
漂变、近亲交配
Drift and inbreeding
等位基因丢失、近交衰退
Loss of alleles and inbreeding depression
遗传变异丢失
Loss of genetic variation

表1 种群生存力的影响因素

Table 1 Factors affecting population viability

影响因素 Factors 对种群的影响 Effects on population
生境变化 Habitat changes
温度/降水的变化
Changes in temperature or precipitation
生境的可利用性、生物物候、种群的生长、繁殖以及迁移
Habitat availability, biological phenology, population growth, reproduction, and migration
生境破碎化
Habitat fragmentation
生存、繁殖、迁移、定植等
Survival, reproduction, migration, colonization, etc.
侵蚀、滑坡、土地利用变化、富营养化
Erosion, landslides, land-use change, and eutrophication
生境的可利用性、植被结构、种间关系
Habitat availability, vegetation structure, and interspecific relationships
人为因素如滥伐、城市化、土地清理等
Artificial impacts such as deforestation, urbanization, land clearing
生境的可利用性、植被结构、生存、繁殖、迁移、定植
Habitat availability, vegetation structure, survival, reproduction, migration, and colonization
生物间互作 Biological interaction
传粉昆虫减少或环境变化导致植物花期与传粉昆虫活动时期不同步
Loss of pollinators or asynchronism between flowering period and pollinators’ activity period caused by environmental change
繁殖
Reproduction
种内竞争、共生生物的选择偏好
Intraspecific competition and preferences of symbiotic organisms
繁殖
Reproduction
外来种的入侵
Invasion of alien species
种间关系、竞争强度、种群对生境的优先权
Interspecies relationships, competition intensity, and population priorities over habitats
植食性动物的迁入
Invasion of herbivores
生长、繁殖
Growth and reproduction
遗传结构改变 Genetic structural changes
种群数量少, 分布范围狭窄
Small population and narrow distribution
漂变、近亲交配
Drift and inbreeding
等位基因丢失、近交衰退
Loss of alleles and inbreeding depression
遗传变异丢失
Loss of genetic variation
模型 Models 具体内容 Details
生境模型 Habitat models
专家系统的概念模型
Conceptual models based on
expert opinion
通过专家评估种群所处环境的关键变量与种群生长适宜性的关系, 获取不同生境斑块的生境适宜性指数, 构建生境适宜性地图, 进而评估种群在整个分布区域的生存力。
Experts evaluate the relationship between the key variables of the environment and the growth suitability of the population, obtain the habitat suitability index of different habitat patches, construct a habitat suitability map, and then evaluate the population’s viability in the entire distribution area.
多元关联分析方法
Multivariate association
methods
多元关联分析整合多类型数据, 寻找种群生存力与各生境要素之间的相关关系, 还可运用多元距离度量创建生境地图, 评估种群生存力。常用多元关联方法有相关分析、典范对应分析(CCA)、生态位因子分析(ENFA)等。
Multivariate association analysis integrates multiple types of data to find the correlation between population viability and habitat elements. Multivariate distance measures can also be used to create habitat maps to assess population viability. Commonly used multiple correlation methods including correlation analysis, canonical correspondence analysis (CCA), and ecological niche factor analysis (ENFA).
回归分析
Regression analysis
构建种群统计学特征与环境变量之间的线性或非线性关系, 寻找不同变量对种群特征的影响大小。回归分析主要包括广义线性模型(GLM)和广义可加模型(GAM)。
Regression analysis constructs a linear or non-linear relationship between population demographics and environmental variables, and evaluates the effects of multiple variables on population viability. Regression analysis mainly includes generalized linear model (GLM) and generalized additive model (GAM).
种群统计模型 Population demographic models
扩散近似模型
Diffusion approximation
model
一种非结构的种群生存力分析方法。扩散近似模型利用时间尺度上的种群数量变化来估计种群随机增长率的均值及方差, 在此基础之上评估种群的维持概率。
An unstructured PVA approach. Diffusion approximation model uses a time series of population counts to estimate the mean and variance of the stochastic population growth rate, then predict the probability of persistence.
矩阵模型
Matrix model
植物种群生存力分析最常用的模型。此类模型关注不同年龄/大小的个体的繁殖率、死亡率的差异。矩阵模型通过存活率和繁殖率计算不同阶段间的转移概率, 可描述不同阶段的个体数量变化, 进而预测种群生存力。
The most commonly used model for plant PVA. Matrix model accounts for difference in rates of reproduction and mortality among individuals of different ages or sizes. Matrix model can describe how the number of individuals in each class changes from one year to the next by using the vital rates to calculate transition probabilities, and then predict population viability.
积分投影模型
Integral projection model
(IPM)
利用个体大小、年龄、出生、死亡等种群特征来预测种群动态。与矩阵模型受限于生活史阶段划分误差不同, 积分投影模型可通过积分处理更多的、离散的种群状态及时空尺度的环境变化。
IPM uses population characteristics such as individual size, age, birth and mortality to predict population dynamics. Unlike the matrix model, IPM can accommodate more, discrete population stages and environmental changes in space and time through integration.
遗传学模型 Genetic model
近交-种群大小模型
Inbreeding-population
size model
基于种群大小、遗传多样性以及适合度, 构建近交衰退与种群大小之间的迭代模型, 进而预测种群动态。
This model predicts population dynamics by constructing an iterative model between inbreeding decline and population size based on population size, genetic diversity, and fitness.

表2 种群生存力分析的主要方法

Table 2 General methods of population viability analysis (PVA)

模型 Models 具体内容 Details
生境模型 Habitat models
专家系统的概念模型
Conceptual models based on
expert opinion
通过专家评估种群所处环境的关键变量与种群生长适宜性的关系, 获取不同生境斑块的生境适宜性指数, 构建生境适宜性地图, 进而评估种群在整个分布区域的生存力。
Experts evaluate the relationship between the key variables of the environment and the growth suitability of the population, obtain the habitat suitability index of different habitat patches, construct a habitat suitability map, and then evaluate the population’s viability in the entire distribution area.
多元关联分析方法
Multivariate association
methods
多元关联分析整合多类型数据, 寻找种群生存力与各生境要素之间的相关关系, 还可运用多元距离度量创建生境地图, 评估种群生存力。常用多元关联方法有相关分析、典范对应分析(CCA)、生态位因子分析(ENFA)等。
Multivariate association analysis integrates multiple types of data to find the correlation between population viability and habitat elements. Multivariate distance measures can also be used to create habitat maps to assess population viability. Commonly used multiple correlation methods including correlation analysis, canonical correspondence analysis (CCA), and ecological niche factor analysis (ENFA).
回归分析
Regression analysis
构建种群统计学特征与环境变量之间的线性或非线性关系, 寻找不同变量对种群特征的影响大小。回归分析主要包括广义线性模型(GLM)和广义可加模型(GAM)。
Regression analysis constructs a linear or non-linear relationship between population demographics and environmental variables, and evaluates the effects of multiple variables on population viability. Regression analysis mainly includes generalized linear model (GLM) and generalized additive model (GAM).
种群统计模型 Population demographic models
扩散近似模型
Diffusion approximation
model
一种非结构的种群生存力分析方法。扩散近似模型利用时间尺度上的种群数量变化来估计种群随机增长率的均值及方差, 在此基础之上评估种群的维持概率。
An unstructured PVA approach. Diffusion approximation model uses a time series of population counts to estimate the mean and variance of the stochastic population growth rate, then predict the probability of persistence.
矩阵模型
Matrix model
植物种群生存力分析最常用的模型。此类模型关注不同年龄/大小的个体的繁殖率、死亡率的差异。矩阵模型通过存活率和繁殖率计算不同阶段间的转移概率, 可描述不同阶段的个体数量变化, 进而预测种群生存力。
The most commonly used model for plant PVA. Matrix model accounts for difference in rates of reproduction and mortality among individuals of different ages or sizes. Matrix model can describe how the number of individuals in each class changes from one year to the next by using the vital rates to calculate transition probabilities, and then predict population viability.
积分投影模型
Integral projection model
(IPM)
利用个体大小、年龄、出生、死亡等种群特征来预测种群动态。与矩阵模型受限于生活史阶段划分误差不同, 积分投影模型可通过积分处理更多的、离散的种群状态及时空尺度的环境变化。
IPM uses population characteristics such as individual size, age, birth and mortality to predict population dynamics. Unlike the matrix model, IPM can accommodate more, discrete population stages and environmental changes in space and time through integration.
遗传学模型 Genetic model
近交-种群大小模型
Inbreeding-population
size model
基于种群大小、遗传多样性以及适合度, 构建近交衰退与种群大小之间的迭代模型, 进而预测种群动态。
This model predicts population dynamics by constructing an iterative model between inbreeding decline and population size based on population size, genetic diversity, and fitness.
Aguilar R, Ashworth L, Galetto L, Aizen MA ( 2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980. Aitken SN, Whitlock MC ( 2013) Assiste. gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution, and Systematics, 44, 367-388. Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S ( 2008) Adaptation, migration or extirpation: Climate change outcomes for tree populations. Evolutionary Applications, 1, 95-111. Akçakaya HR, Sjögren-Gulve P ( 2000) Population viability analyses in conservation planning: An overview. Ecological Bulletins, 48, 9-21. Bay RA, Rose N, Barrett R, Bernatchez L, Ghalambor CK, Lasky JR, Brem RB, Palumbi SR, Ralph P ( 2017) Predicting responses to contemporary environmental change using evolutionary response architectures. The American Naturalist, 189, 463-473. Beissinger SR, McCullough DR(2002) Population Viability Analysis. University of Chicago Press, Chicago. Blanquart F, Kaltz O, Nuismer SL, Gandon S ( 2013) A practical guide to measuring local adaptation. Ecology Letters, 16, 1195-1205. Brigham CA ( 2003) Population Viability in Plants: Conservation, Management, and Modeling of Rare Plants. Springer Science & Business Media, Heidelberg. Brondizio ES, Settele J, Díaz S, Ngo HT ( 2019) Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, Germany. Brook BW, O’Grady JJ, Chapman AP, Burgman MA, Akçakaya HR, Frankham R ( 2000) Predictive accuracy of population viability analysis in conservation biology. Nature, 404, 385-387. Burgman MA, Lamont BB ( 1992) A stochastic model for the viability of Banksia cuneata populations: Environmental, demographic and genetic effects. Journal of Applied Ecology, 29, 719-727. Castro S, Dostalek T, van der Meer S, Oostermeijer G, Munzbergova Z ( 2015) Does pollen limitation affect population growth of the endangered Dracocephalum austriacum L.? Population Ecology, 57, 105-116. Chen SL, Li JG, Wang XG ( 2005) Fuzzy Set Theory and Its Application. Science Press, Beijing.(in Chinese) Chevin LM, Lande R, Mace GM ( 2010) Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biology, 8, e1000357. Clark JS ( 2003) Uncertainty and variability in demography and population growth: A hierarchical approach. Ecology, 84, 1370-1381. Deng JL ( 1987) Basic Methodology of Gray System. Huazhong University of Science and Technology Press, Wuhan.(in Chinese) Dennis B, Munholland PL, Scott JM ( 1991) Estimation of growth and extinction parameters for endangered species. Ecological Monographs, 61, 115-143. Early R, Anderson B, Thomas CD ( 2008) Using habitat distribution models to evaluate large-scale landscape priorities for spatially dynamic species. Journal of Applied Ecology, 45, 228-238. Eizaguirre C, Baltazar-Soares M ( 2014) Evolutionary conservation—Evaluating the adaptive potential of species. Evolutionary Applications, 7, 963-967. Ellner SP, Rees M ( 2006) Integral projection models for species with complex demography. The American Naturalist, 167, 410-428. Fisher DO, Owens IPF ( 2004) The comparative method in conservation biology. Trends in Ecology & Evolution, 19, 391-398. Foll M, Gaggiotti O ( 2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics, 174, 875-891. Fox GA, Gurevitch J ( 2000) Population numbers count: Tools for near-term demographic analysis. The American Naturalist, 156, 242-256. Frankham R, Briscoe DA, Ballou JD ( 2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK. Gray PA, Cameron D, Kirkham I ( 1996) Wildlife habitat evaluation in forested ecosystems: Some examples from Canada and the United States. In: Conservation of Faunal Diversity in Forested Landscapes (eds DeGraaf RM, Miller RI), pp. 407-536. Chapman and Hall, London. Griffith AB, Salguero-Gomez R, Merow C, McMahon S ( 2016) Demography beyond the population. Journal of Ecology, 104, 271-280. Grimm V, Railsback SF ( 2013) Individual-based Modeling and Ecology. Princeton University Press, Princeton. Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, Schwartz MW, Wintle BA, Broennimann O, Austin M, Ferrier S, Kearney MR, Possingham HP, Buckley YM ( 2013) Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435. Guisan A, Weiss SB, Weiss AD ( 1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 143, 107-122. Guo Z, Zang RG ( 2013) Evaluation index system of endangered levels of the wild plants with tiny population in China. Scientia Silvae Sinicae, 49(6), 10-17. (in Chinese with English abstract) Hampton SE, Holmes EE, Scheef LP, Scheuerell MD, Katz SL, Pendleton DE, Ward EJ ( 2013) Quantifying effects of abiotic and biotic drivers on community dynamics with multivariate autoregressive (MAR) models. Ecology, 94, 2663-2669. Han JW, Kamber M, Pei J ( 2012) Data Mining: Concepts and Techniques. Elsevier, New York, USA. Hansen MM, Olivieri I, Waller DM, Nielsen EE, GeM Working Group ( 2012) Monitoring adaptive genetic responses to environmental change. Molecular Ecology, 21, 1311-1329. Hoffmann AA, Sgro CM, Kristensen TN ( 2017) Revisiting adaptive potential, population size, and conservation. Trends in Ecology & Evolution, 32, 506-517. Holmes EE, Sabo JL, Viscido SV, Fagan WF ( 2007) A statistical approach to quasi-extinction forecasting. Ecology Letters, 10, 1182-1198. Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS ( 2019) Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology & Evolution, 3, 1043-1047. Jackson ST, Betancourt JL, Booth RK, Gray ST ( 2009) Ecolog. and the ratchet of events: Climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences, USA, 106, 19685-19692. Jacquemyn H, Brys R, Hermy M, Willems JH ( 2007) Long- term dynamics and population viability in one of the last populations of the endangered Spiranthes spiralis (Orchidaceae) in the Netherlands. Biological Conservation, 134, 14-21. Johnson DS, Fritz L ( 2014) agTrend: A Bayesian approach for estimating trends of aggregated abundance. Methods in Ecology and Evolution, 5, 1110-1115. Kalisz S, Mcpeek MA ( 1992) Demography of an age-structured annual: Resampled projection matrices, elasticity analyses, and seed bank effects. Ecology, 73, 1082-1093. Kolb A ( 2008) Habitat fragmentation reduces plant fitness by disturbing pollination and modifying response to herbivory. Biological Conservation, 141, 2540-2549. Koons DN, Iles DT, Schaub M, Caswell H ( 2016) A life- history perspective on the demographic drivers of structured population dynamics in changing environments. Ecology Letters, 19, 1023-1031. Kurmaz VA, Kotkin AS, Simbirtseva GV ( 2011) Decoupling of differentiation between traits and their underlying genes in response to divergent selection. Heredity, 108, 375-385. Leimu R, Mutikainen P, Koricheva J, Fischer M ( 2006) How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942-952. Li H ( 2012) Statistical Learning Methods. Tsinghua University Press, Beijing.(in Chinese) Li YY, Guan SM, Yang SZ, Luo Y, Chen XY ( 2012) Genetic decline and inbreeding depression in an extremely rare tree. Conservation Genetics, 13, 343-347. Lowe WH, Kovach RP, Allendorf FW ( 2017) Population genetics and demography unite ecology and evolution. Trends in Ecology & Evolution, 32, 141-152. Masso S, Lopez-Pujol J, Lopez-Alvarado J, Blanche C, Saez L ( 2016) One species, one genotype: No genotypic variability in the extremely narrow endemic tetraploid Agrostis barceloi (Gramineae). Plant Systematics and Evolution, 302, 609-615. Menges ES ( 2000) Population viability analyses in plants: Challenges and opportunities. Trends in Ecology & Evolution, 15, 51-56. Menges ES, Dolan RW ( 1998) Demographic viability of populations of Silene regia in midwestern prairies: Relationships with fire management, genetic variation, geographic location, population size and isolation. Journal of Ecology, 86, 63-78. Morris W, Conservancy N ( 1999) A Practical Handbook for Population Viability Analysis. The Nature Conservancy, Arlington. Pe’er G, Matsinos YG, Johst K, Franz KW, Turlure C, Radchuk V, Malinowska AH, Curtis JM, Naujokaitis-Lewis I, Wintle BA, Henle K ( 2013) A protocol for better design, application, and communication of population viability analyses. Conservation Biology, 27, 644-656. Peng SL, Wang DP, Li QF ( 2002) Advances in plant population viability analysis. Acta Ecologica Sinica, 22, 2175-2185. (in Chinese with English abstract) Pfister CA, Stevens FR ( 2003) Individual variation and environmental stochasticity: Implications for matrix model predictions. Ecology, 84, 496-510. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO ( 2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752. Ruan YM, Zhang JJ, Yao XH, Ye QG ( 2012) Genetic diversity and fine-scale spatial genetic structure of different lifehistory stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae). Biodiversity Science, 20, 460-469. (in Chinese with English abstract) Schleuning M, Matthies D ( 2009) Habitat change and plant demography: Assessing the extinction risk of a formerly common grassland perennial. Conservation Biology, 23, 174-183. Tang CQ, Yang YC, Ohsawa M, Momohara A, Hara M, Cheng SL, Fan SH ( 2011) Population structure of relict Metasequoia glyptostroboides and its habitat fragmentation and degradation in south-central China. Biological Conservation, 144, 279-289. Teller BJ, Miller AD, Shea K ( 2015) Conservation of passively dispersed organisms in the context of habitat degradation and destruction. Journal of Applied Ecology, 52, 514-521. Thomson DM, Schwartz MW ( 2006) Using population count data to assess the effects of changing river flow on an endangered riparian plant. Conservation Biology, 20, 1132-1142. Urban MC ( 2015) Accelerating extinction risk from climate change. Science, 348, 571-573. Verstraete MM, Scholes RJ, Smith MS ( 2009) Climate and desertification: Looking at an old problem through new lenses. Frontiers in Ecology and the Environment, 7, 421-428. Wake DB, Vredenburg VT ( 2008) Ar. we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, USA, 105, 11466-11473. Wei LS ( 2016) Bayesian Statistics. Higher Education Press, Beijing.(in Chinese) Wiegand T, Uriarte M, Kraft NJB, Shen GC, Wang XG, He FL ( 2017) Spatiall. explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annual Review of Ecology, Evolution, and Systematics, 48, 329-351. Willi Y, Hoffmann AA ( 2009) Demographic factors and genetic variation influence population persistence under environmental change. Journal of Evolutionary Biology, 22, 124-133. Willi Y, Van Buskirk J, Hoffmann AA ( 2006) Limit. to the adaptive potential of small populations. Annual Review of Ecology, Evolution, and Systematics, 37, 433-458. Xia XT, Wang ZY ( 2006) A novel non-statistical theory and its applications to hypothesis testing. Acta Metrologica Sinica, 27, 190-195. (in Chinese with English abstract) Ying ZX, Ge G, Liu YJ ( 2018) The effects of clonal integration on the responses of plant species to habitat loss and habitat fragmentation. Ecological Modelling, 384, 290-295. Zhang JJ, Ye QG, Gao PX, Yao XH ( 2012) Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae): Implications for conservation. Botanical Journal of the Linnean Society, 170, 232-242. Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, Li ZQ, Huang JH ( 2016) Conservation and restoration for typical critically endangered wild plants with extremely small population. Acta Ecologica Sinica, 36, 7130-7135. (in Chinese with English abstract) 孙哲明, 刘亚恒, 彭秋桐, 徐芷妍, 杨予静, 欧文慧, 李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议 [J]. 生物多样性, 2022, 30(6): 21517-. 许玥, 臧润国. 中国极小种群野生植物保护理论与实践研究进展 [J]. 生物多样性, 2022, 30(10): 22505-. 姚志, 郭军, 金晨钟, 刘勇波. 中国纳入一级保护的极小种群野生植物濒危机制 [J]. 生物多样性, 2021, 29(3): 394-408. 宋垚彬, 徐力, 段俊鹏, 张卫军, 申屠晓露, 李天翔, 臧润国, 董鸣. 西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局 [J]. 生物多样性, 2020, 28(3): 269-276. 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响 [J]. 生物多样性, 2020, 28(3): 277-288. 苏金源, 燕语, 李冲, 李丹, 杜芳. 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例 [J]. 生物多样性, 2020, 28(3): 376-384. 路兴慧, 臧润国, 丁易, 黄继红, 许玥. 极小种群野生植物坡垒的生境特征及其对幼苗多度的影响 [J]. 生物多样性, 2020, 28(3): 289-295. 赵志霞, 赵常明, 邓舒雨, 申国珍, 谢宗强, 熊高明, 李俊清. 重度砍伐后极小种群野生植物崖柏群落结构动态 [J]. 生物多样性, 2020, 28(3): 333-339. 邓莎, 吴艳妮, 吴坤林, 房林, 李琳, 曾宋君. 14种中国典型极小种群野生植物繁育特性和人工繁殖研究进展 [J]. 生物多样性, 2020, 28(3): 385-400. 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. 极小种群野生植物黄梅秤锤树群落结构与动态 [J]. 生物多样性, 2018, 26(7): 749-759. 张则瑾, 郭焱培, 贺金生, 唐志尧. 中国极小种群野生植物的保护现状评估 [J]. 生物多样性, 2018, 26(6): 572-577. 李义明. 种群生存力分析:准确性和保护应用 [J]. 生物多样性, 2003, 11(4): 340-350. 李欣海, 李典谟, 路宝忠, 翟天庆. 朱鹮(Nipponia nippon)种群生存力分析 [J]. 生物多样性, 1996, 04(2): 69-77. 李义明, 李典谟. 自然保护区设计的主要原理和方法 [J]. 生物多样性, 1996, 04(1): 32-40. 李义明, 李典谟. 种群生存力分析研究进展和趋势 [J]. 生物多样性, 1994, 02(1): 1-10.