添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

摘要: 随着电子设备的增长和电动车辆的普及,保障锂离子电池的安全和稳定成为研究人员的重要课题,其中电池的剩余使用寿命(RUL)为监测电池的手段之一。锂离子电池在其充放电循环期间会经历不可逆过程,可使电池容量持续衰减,最终导致电池故障,为进行合理的充放电管理,满足实际应用中的高可靠性要求,对使用过程中的RUL预测进行研究,介绍对锂电池RUL预测的基于机理模型、基于数据驱动、基于机理模型与数据驱动融合和基于数据驱动的模型融合等4种方法,并讨论基于数据驱动的各RUL预测方法的优缺点,总结并展望未来研究方向和发展趋势。

电动汽车, 锂离子电池, 剩余使用寿命, 数据驱动, 模型融合方法

Abstract: With the rapid growth and popularization of electronic devices and electric vehicles,how to guarantee the safety and stability of lithium-ion batteries becomes an important topic of relevant research,in which the Remaining Useful Life(RUL) of batteries becomes one of the most critical means to monitor the state of batteries.During the charge-discharge cycles,lithium-ion batteries undergo an irreversible process that can cause continuous degradation on battery capacity and end up in battery malfunction.In order to perform reasonable charge-discharge management that can meet the high reliability requirements in actual applications,this paper conducts a research on the RUL prediction in the using process of lithium-ion batteries.Four RUL prediction methods are expounded herein, which are based on mechanism model,data driven,mechanism and data driven fusion and data driven model fusion respectively,and the advantages and disadvantages of RUL prediction methods based on data driven are discussed.Moreover,the future research direction and trends are also summarized and predicted herein.

Key words: electric vehicles, lithium-ion batteries, Remaining Useful Life(RUL), data driven, model fusion method

copyright@《计算机工程》编辑部

2023 © 华东计算技术研究所(中国电子科技集团公司第三十二研究所) 沪ICP备08102551号-2

地址:上海市嘉定区澄浏公路63号(201808) Tel:021-67092217(费用/发票)(稿件问题请直接联系栏目编辑) E-mail:[email protected]

沪公网安备31011402007040号

本系统由 北京玛格泰克科技发展有限公司 设计开发