一、HashMap集合简介
1.1 介绍
HashMap基于哈希表的Map接口实现,是以key-value存储形式存在,即主要用来存放键值对。HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。
JDK1.8 之前 HashMap 由
数组+链表
组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突
(两个对象调用的hashCode方法计算的哈希码值一致导致计算的数组索引值相同)
而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,
当链表长度大于阈值(或者红黑树的边界值,默认为 8)并且当前数组的长度大于64时,此时此索引位置上的所有数据改为使用红黑树存储。
将链表转换成红黑树前会判断,即使阈值大于8,但是数组长度小于64,此时并不会将链表变为红黑树。而是选择进行数组扩容。
这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡 。同时数组长度小于64时,搜索时间相对要快些。所以综上所述为了提高性能和减少搜索时间,底层在阈值大于8并且数组长度大于64时,链表才转换为红黑树。具体可以参考
treeifyBin
方法。
当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变的更高效。
1.2 特点
HashMap 存取无序的
键和值位置都可以是null,但是键位置只能是一个null
键位置是唯一的,底层的数据结构控制键的
jdk1.8前数据结构是:
链表 + 数组
; jdk1.8之后是 :
链表 + 数组 + 红黑树
阈值(边界值) > 8 并且数组长度大于64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。
1.3 红黑树
这里介绍一下红黑树
摘自:
https://www.cnblogs.com/skywang12345/p/3245399.html
R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种
特殊的二叉查找树
。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。
红黑树的特性
:
(1)每个节点或者是黑色,或者是红色。
(2)根节点是黑色。
(3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
(4)如果一个节点是红色的,则它的子节点必须是黑色的。
(5)从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。
(01) 特性(3)中的叶子节点,是只为空(NIL或null)的节点。
(02) 特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。
二、HashMap底层数据结构
2.1 数据结构概念
数据
结构是
计算机
存储、组织
数据
的方式。数据结构是指相互之间存在一种或多种特定关系的
数据元素
的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储
效率
。数据结构往往同高效的检索
算法
和
索引
技术有关。
数据结构:就是存储数据的一种方式。ArrayList LinkedList
在JDK1.8 之前 HashMap 由
数组+链表
数据结构组成的。
在JDK1.8 之后 HashMap 由
数组+链表 +红黑树
数据结构组成的。
2.2 存储数据的过程
示例代码:
HashMap<String, Integer> map = new HashMap<>();
map.put("柳岩", 18);
map.put("杨幂", 28);
map.put("刘德华", 40);
map.put("柳岩", 20);
输出结果:
{杨幂=28, 柳岩=20, 刘德华=40}
当创建 HashMap 集合对象的时候,HashMap 的构造方法并没有创建数组,而是在第一次调用 put 方法时创建一个长度是16 的数组 Node[] table (jdk1.8 之前是 Entry[] table 一维数组)用来存储键值对数据。在jdk8之后不是在HashMap 的构造方法底层创建数组了,是在第一次调用put方法时创建的数组。
假设向哈希表中存储 <柳岩,18> 数据,根据柳岩调用 String 类中重写之后的 hashCode() 方法计算出值,然后结合数组长度采用某种算法计算出向 Node 数组中存储数据的空间的索引值。如果计算出的索引空间没有数据,则直接将<柳岩,18>存储到数组中。(举例:计算出的索引是 3 )
向哈希表中存储数据 <刘德华,40>,假设算出的 hashCode() 方法结合数祖长度计算出的索引值也是3,那么此时数组空间不是 null,此时底层会比较柳岩和刘德华的 hash 值是否一致,如果不一致,则在空间上划出一个结点来存储键值对数据对 <刘德华,40>,这种方式称为拉链法。
假设向哈希表中存储数据 <柳岩,20>,那么首先根据柳岩调用 hashCode() 方法结合数组长度计算出索引肯定是 3,此时比较后存储的数据柳岩和已经存在的数据的 hash 值是否相等,如果 hash 值相等,此时发生哈希碰撞。那么底层会调用柳岩所属类 String 中的 equals() 方法比较两个内容是否相等:
相等:将后添加的数据的 value 覆盖之前的 value。
不相等:继续向下和其他的数据的 key 进行比较,如果都不相等,则划出一个结点存储数据,如果结点长度即链表长度大于阈值 8 并且数组长度大于 64 则将链表变为红黑树。
存储数据的过程
在不断的添加数据的过程中,会涉及到扩容问题,当超出阈值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的 2 倍,并将原有的数据复制过来。
综上描述,当位于一个表中的元素较多,即 hash 值相等但是内容不相等的元素较多时,通过 key 值依次查找的效率较低。而 jdk1.8 中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阈值)超过8且当前数组的长度大于64时,将链表转换为红黑树,这样大大减少了查找时间。
简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。如下图所示:
jdk1.8 中引入红黑树的进一步原因:
jdk1.8 以前 HashMap 的实现是数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有n个元素,遍历的时间复杂度就是O(n),完全失去了它的优势。
针对这种情况,jdk1.8 中引入了红黑树(查找时间复杂度为 O(logn))来优化这个问题。当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。
哈希表中同一个位置可能存有多个元素,为应对哈希冲突问题,将哈希表中的每个位置表示一个哈希桶。
size 表示 HashMap 中键值对的实时数量,注意这个不等于数组的长度。
threshold(临界值)= capacity(容量)* loadFactor(负载因子)。这个值是当前已占用数组长度的最大值。size 超过这个值就重新 resize(扩容),扩容后的 HashMap 容量是之前容量的两倍。
2.2 面试题
HashMap 中 hash 函数是怎么实现的?采用何种算法计算hash值?还有哪些hash函数的实现方式?
答:对于 key 的 hashCode值结合数值长度 ,进行无符号右移 16(>>>),按位异或(^)、按位与(&)计算出索引。
还有平方取中法,伪随机数法和取余数法。这三种效率都比较低。而无符号右移 16 位异或运算效率是最高的。
当两个对象的 hashCode 相等时会怎么样?
答:会产生哈希碰撞。若 key 值内容相同则替换旧的 value,key值不同连接到链表后面,链表长度超过阈值 8 就转换为红黑树存储。
什么是哈希碰撞,如何解决哈希碰撞?
答:只要两个元素的 key 计算的哈希码值相同就会发生哈希碰撞。jdk8 之前使用链表解决哈希碰撞。jdk8之后使用链表 + 红黑树解决哈希碰撞。
如果两个键的 hashCode 相同,如何存储键值对?
答:通过 equals 比较内容是否相同。相同:则新的 value 覆盖之前的 value。不相同:则将新的键值对添加到哈希表中。
三、HashMap继承关系
HashMap继承关系如下图所示:
Cloneable 空接口,表示可以克隆。 创建并返回HashMap对象的一个副本。
Serializable 序列化接口。属于标记性接口。HashMap对象可以被序列化和反序列化。
AbstractMap 父类提供了Map实现接口。以最大限度地减少实现此接口所需的工作。
补充:通过上述继承关系我们发现一个很奇怪的现象, 就是HashMap已经继承了AbstractMap而AbstractMap类实现了Map接口,那为什么HashMap还要在实现Map接口呢?同样在ArrayList中LinkedList中都是这种结构。
据 java 集合框架的创始人Josh Bloch描述,这样的写法是一个失误。在java集合框架中,类似这样的写法很多,最开始写java集合框架的时候,他认为这样写,在某些地方可能是有价值的,直到他意识到错了。JDK的维护者,后来不认为这个小小的失误值得去修改,所以就这样存在下来了。
四、HashMap 集合类的成员
4.1 成员变量
serialVersionUID
序列化版本号
private static final long serialVersionUID = 362498820763181265L;
DEFAULT_INITIAL_CAPACITY
集合的初始化容量(必须是 2 的 n 次幂)
// 默认的初始容量是16 1 << 4 相当于 1*2的4次方 = 16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
问题:为什么必须是 2 的 n 次幂?如果输入值不是 2 的幂比如 10 会怎么样?
根据上述讲解我们已经知道,当向 HashMap 中添加一个元素的时候,需要根据 key 的 hash 值,去确定其在数组中的具体位置。HashMap 为了存取高效,减少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现的关键就在把数据存到哪个链表中的算法。
这个算法实际就是取模,hash % length,计算机中直接求余效率不如位移运算。所以源码中做了优化,使用 hash & (length - 1),而实际上 hash % length 等于 hash & ( length - 1) 的前提是 length 是 2 的 n 次幂。
为什么这样能均匀分布减少碰撞呢?2的n次方实际就是1后面n个0,2的n次方-1 实际就是n个1;
说明:按位与运算:相同的二进制数位上,都是1的时候,结果为1,否则为零。
例如长度为8时候,3&(8-1)=3 2&(8-1)=2 ,不同位置上,不碰撞;
例如长度length为8时候,8是2的3次幂。二进制是:1000
length-1 二进制运算:
- 1
---------------------
如下所示:
hash&(length-1)
3 &(8 - 1)=3
00000011 3 hash
& 00000111 7 length-1
---------------------
00000011-----》3 数组下标
hash&(length-1)
2 & (8 - 1) = 2
00000010 2 hash
& 00000111 7 length-1
---------------------
00000010-----》2 数组下标
说明:上述计算结果是不同位置上,不碰撞;
例如长度为9时候,3&(9-1)=0 2&(9-1)=0 ,都在0上,碰撞了;
例如长度length为9时候,9不是2的n次幂。二进制是:00001001
length-1 二进制运算:
- 1
---------------------
如下所示:
hash&(length-1)
3 &(9 - 1)=0
00000011 3 hash
& 00001000 8 length-1
---------------------
00000000-----》0 数组下标
hash&(length-1)
2 & (9 - 1) = 2
00000010 2 hash
& 00001000 8 length-1
---------------------
00000000-----》0 数组下标
说明:上述计算结果都在0上,碰撞了
注意: 当然如果不考虑效率直接求余即可(就不需要要求长度必须是2的n次方了)
1.由上面可以看出,当我们根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据的均匀插入,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,加大hash冲突。
2.另一方面,一般我们可能会想通过 % 求余来确定位置,这样也可以,只不过性能不如 & 运算。而且当n是2的幂次方时:hash & (length - 1) == hash % length
3.因此,HashMap 容量为2次幂的原因,就是为了数据的的均匀分布,减少hash冲突,毕竟hash冲突越大,代表数组中一个链的长度越大,这样的话会降低hashmap的性能
4.如果创建HashMap对象时,输入的数组长度是10,不是2的幂,HashMap通过一通位移运算和或运算得到的肯定是2的幂次数,并且是离那个数最近的数字。
源代码如下:
//创建HashMap集合的对象,指定数组长度是10,不是2的幂
HashMap hashMap = new HashMap(10);
public HashMap(int initialCapacity) {//initialCapacity=10
this(initialCapacity, DEFAULT_LOAD_FACTOR);
public HashMap(int initialCapacity, float loadFactor) {//initialCapacity=10
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);//initialCapacity=10
* Returns a power of two size for the given target capacity.
static final int tableSizeFor(int cap) {//int cap = 10
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
由此可以看到,当在实例化HashMap实例时,如果给定了initialCapacity(假设是10),由于HashMap的capacity必须都是2的幂,因此这个方法用于找到大于等于initialCapacity(假设是10)的最小的2的幂(initialCapacity如果就是2的幂,则返回的还是这个数)。
核心就是将后几位全都变为1
int n = cap - 1;
防止 cap 已经是 2 的幂。如果 cap 已经是 2 的幂,又没有这个减 1 操作,则执行完后面的几条无符号操作之后,返回的 capacity 将是这个 cap 的 2 倍。
如果 n 这时为 0 了(经过了cap - 1后),则经过后面的几次无符号右移依然是 0,最后返回的 capacity 是1(最后有个 n + 1 的操作)。
第一次右移 :
int n = cap - 1;//cap=10 n=9
n |= n >>> 1;
00000000 00000000 00000000 00001001 //9
00000000 00000000 00000000 00000100 //9右移之后变为4
-------------------------------------------------
00000000 00000000 00000000 00001101 //按位异或之后是13
由于n不等于0,则n的二进制表示中总会有一bit为1,这时考虑最高位的1。通过无符号右移1位,则将最高位的1右移了1位,再做或操作,使得n的二进制表示中与最高位的1紧邻的右边一位也为1,如:
00000000 00000000 00000000 00001101
第二次右移 :
n |= n >>> 2;//n通过第一次右移变为了:n=13
00000000 00000000 00000000 00001101 // 13
00000000 00000000 00000000 00000011 //13右移之后变为3
-------------------------------------------------
00000000 00000000 00000000 00001111 //按位异或之后是15
注意,这个n已经经过了n |= n >>> 1;
操作。假设此时n为00000000 00000000 00000000 00001101 ,则n无符号右移两位,会将最高位两个连续的1右移两位,然后再与原来的n做或操作,这样n的二进制表示的高位中会有4个连续的1。如:
00000000 00000000 00000000 00001111 //按位异或之后是15
第三次右移 :
n |= n >>> 4;//n通过第一、二次右移变为了:n=15
00000000 00000000 00000000 00001111 // 15
00000000 00000000 00000000 00000000 //15右移之后变为0
-------------------------------------------------
00000000 00000000 00000000 00001111 //按位异或之后是15
这次把已经有的高位中的连续的4个1,右移4位,再做或操作,这样n的二进制表示的高位中正常会有8个连续的1。如00001111 1111xxxxxx 。 以此类推
注意:容量最大也就是 32bit 的正数,因此最后 n |= n >>> 16; 最多也就 32 个 1(但是这已经是负数了,在执行 tableSizeFor 之前,对 initialCapacity 做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取 MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY,会执行位移操作。所以这里面的位移操作之后,最大 30 个 1,不会大于等于 MAXIMUM_CAPACITY。30 个 1,加 1 后得 2 ^ 30)。
完整例子:
注意:得到的这个 capacity 却被赋值给了 threshold。
this.threshold = tableSizeFor(initialCapacity);
DEFAULT_LOAD_FACTOR
默认的负载因子(默认值 0.75)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
MAXIMUM_CAPACITY
集合最大容量
static final int MAXIMUM_CAPACITY = 1 << 30; // 2的30次幂
TREEIFY_THRESHOLD
当链表的值超过8则会转为红黑树(jdk1.8新增)
// 当桶(bucket)上的结点数大于这个值时会转为红黑树
static final int TREEIFY_THRESHOLD = 8;
问题:为什么 Map 桶中结点个数超过 8 才转为红黑树?
8这个阈值定义在HashMap中,针对这个成员变量,在源码的注释中只说明了8是bin(bin就是bucket(桶))从链表转成树的阈值,但是并没有说明为什么是8:
在HashMap中有一段注释说明: 我们继续往下看 :
Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins. In usages with well-distributed user hashCodes, tree bins are rarely used. Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution
(http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average for the default resizing threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5)*pow(0.5, k)/factorial(k)).
The first values are:
因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。当它们变得太小(由于删除或调整大小)时,就会被转换回普通的桶。在使用分布良好的用户hashcode时,很少使用树箱。理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布
(http://en.wikipedia.org/wiki/Poisson_distribution),默认调整阈值为0.75,平均参数约为0.5,尽管由于调整粒度的差异很大。忽略方差,列表大小k的预期出现次数是(exp(-0.5)*pow(0.5, k)/factorial(k))。
第一个值是:
0: 0.60653066
1: 0.30326533
2: 0.07581633
3: 0.01263606
4: 0.00157952
5: 0.00015795
6: 0.00001316
7: 0.00000094
8: 0.00000006
more: less than 1 in ten million
TreeNodes占用空间是普通Nodes的两倍,所以只有当bin包含足够多的节点时才会转成TreeNodes,而是否足够多就是由TREEIFY_THRESHOLD的值决定的。当bin中节点数变少时,又会转成普通的bin。并且我们查看源码的时候发现,链表长度达到8就转成红黑树,当长度降到6就转成普通bin。
这样就解释了为什么不是一开始就将其转换为TreeNodes,而是需要一定节点数才转为TreeNodes,说白了就是权衡,空间和时间的权衡。
这段内容还说到:当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而JDK又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不过理想情况下随机hashCode算法下所有bin中节点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。所以,之所以选择8,不是随便决定的,而是根据概率统计决定的。由此可见,发展将近30年的Java每一项改动和优化都是非常严谨和科学的。
也就是说:选择8因为符合泊松分布,超过8的时候,概率已经非常小了,所以我们选择8这个数字。
1)Poisson分布(泊松分布),是一种统计与概率学里常见到的离散[概率分布]。
泊松分布的概率函数为:
泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
当插入结点特别多时,由泊松分布可知哈希冲突概率很小了。此时用红黑树替代链表,插入基本就是直接插了,不用左旋,右旋等操作了
2)以下是我在研究这个问题时,在一些资料上面翻看的解释:供大家参考:
红黑树的平均查找长度是log(n),如果长度为8,平均查找长度为log(8)=3,链表的平均查找长度为n/2,当长度为8时,平均查找长度为8/2=4,这才有转换成树的必要;链表长度如果是小于等于6,6/2=3,而log(6)=2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。
UNTREEIFY_THRESHOLD
当链表的值小于 6 则会从红黑树转回链表
// 当桶(bucket)上的结点数小于这个值,树转为链表
static final int UNTREEIFY_THRESHOLD = 6;
MIN_TREEIFY_CAPACITY
当 Map 里面的数量超过这个值时,表中的桶才能进行树形化,否则桶内元素太多时会扩容,而不是树形化为了避免进行扩容、树形化选择的冲突,这个值不能小于4*TREEIFY_THRESHOLD(8)
// 桶中结构转化为红黑树对应的数组长度最小的值
static final int MIN_TREEIFY_CAPACITY = 64;
table
table 用来初始化(必须是二的n次幂)(重点)
// 存储元素的数组
transient Node<K,V>[] table;
在 jdk1.8 中我们了解到 HashMap 是由数组加链表加红黑树来组成的结构,其中 table 就是 HashMap 中的数组,jdk8 之前数组类型是 Entry<K,V> 类型。从 jdk1.8 之后是 Node<K,V> 类型。只是换了个名字,都实现了一样的接口:Map.Entry<K,V>。负责存储键值对数据的。
entrySet
用来存放缓存
// 存放具体元素的集合
transient Set<Map.Entry<K,V>> entrySet;
HashMap 中存放元素的个数(重点)
// 存放元素的个数,注意这个不等于数组的长度
transient int size;
size 为 HashMap 中 K-V 的实时数量,不是数组 table 的长度。
modCount
用来记录 HashMap 的修改次数
// 每次扩容和更改 map 结构的计数器
transient int modCount;
threshold
用来调整大小下一个容量的值计算方式为(容量*负载因子)
// 临界值 当实际大小(容量*负载因子)超过临界值时,会进行扩容
int threshold;
loadFactor
哈希表的负载因子(重点)
// 负载因子
final float loadFactor;
loadFactor 是用来衡量 HashMap 满的程度,表示HashMap的疏密程度,影响 hash 操作到同一个数组位置的概率,计算 HashMap 的实时负载因子的方法为:size/capacity,而不是占用桶的数量去除以 capacity。capacity 是桶的数量,也就是 table 的长度 length。
loadFactor 太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值。
当 HashMap 里面容纳的元素已经达到 HashMap 数组长度的 75% 时,表示 HashMap 太挤了,需要扩容,而扩容这个过程涉及到 rehash、复制数据等操作,非常消耗性能。所以开发中尽量减少扩容的次数,可以通过创建 HashMap 集合对象时指定初始容量来尽量避免。
在 HashMap 的构造器中可以定制 loadFactor。
// 构造方法,构造一个带指定初始容量和负载因子的空HashMap
HashMap(int initialCapacity, float loadFactor);
为什么负载因子设置为0.75,初始化临界值是12?
loadFactor 越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor 越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。
如果希望链表尽可能少些,要提前扩容。有的数组空间有可能一直没有存储数据,负载因子尽可能小一些。
例如:负载因子是0.4。 那么16*0.4--->6 如果数组中满6个空间就扩容会造成数组利用率太低了。
负载因子是0.9。 那么16*0.9--->14 那么这样就会导致链表有点多了,导致查找元素效率低。
所以既兼顾数组利用率又考虑链表不要太多,经过大量测试 0.75 是最佳方案。
负载因子越大hash冲突概率越高,负载因子越小空间利用率越低,所以0.75 是最佳方案
threshold 计算公式:capacity(数组长度默认16) * loadFactor(负载因子默认0.75)。
这个值是当前已占用数组长度的最大值。当 Size >= threshold 的时候,那么就要考虑对数组的 resize(扩容),也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。 扩容后的 HashMap 容量是之前容量的两倍。
4.2 构造方法
HashMap 中重要的构造方法,它们分别如下:
HashMap()
构造一个空的HashMap,默认初始容量(16)和默认负载因子(0.75)。
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的负载因子0.75赋值给loadFactor,并没有创建数组
HashMap(int initialCapacity)
构造一个具有指定的初始容量和默认负载因子(0.75)HashMap 。
// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
HashMap(int initialCapacity, float loadFactor)
构造一个具有指定的初始容量和负载因子的 HashMap。
指定“容量大小”和“负载因子”的构造函数
initialCapacity:指定的容量
loadFactor:指定的负载因子
public HashMap(int initialCapacity, float loadFactor) {
// 判断初始化容量initialCapacity是否小于0
if (initialCapacity < 0)
// 如果小于0,则抛出非法的参数异常IllegalArgumentException
throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
// 判断初始化容量initialCapacity是否大于集合的最大容量MAXIMUM_CAPACITY
if (initialCapacity > MAXIMUM_CAPACITY)
// 如果超过MAXIMUM_CAPACITY,会将MAXIMUM_CAPACITY赋值给initialCapacity
initialCapacity = MAXIMUM_CAPACITY;
// 判断负载因子loadFactor是否小于等于0或者是否是一个非数值
if (loadFactor <= 0 || Float.isNaN(loadFactor))
// 如果满足上述其中之一,则抛出非法的参数异常IllegalArgumentException
throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
// 将指定的负载因子赋值给HashMap成员变量的负载因子loadFactor
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
// 最后调用了tableSizeFor,来看一下方法实现:
返回比指定初始化容量大的最小的2的n次幂
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
对于 javathis.threshold = tableSizeFor(initialCapacity); 疑问解答:
tableSizeFor(initialCapacity)判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指定初始化容量大的最小的2的n次幂。但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边界值了。
有些人会觉得这里是一个bug,应该这样书写:
this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。但是请注意,在jdk8以后的构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推迟到了put方法中,在put方法中会对threshold重新计算。
HashMap(Map<? extends K, ? extends V> m)
包含另一个 “Map” 的构造函数
// 构造一个映射关系与指定 Map 相同的新 HashMap。
public HashMap(Map<? extends K, ? extends V> m) {
// 负载因子loadFactor变为默认的负载因子0.75
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
最后调用了 putMapEntries(),来看一下方法实现:
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
//获取参数集合的长度
int s = m.size();
// 有数据
if (s > 0) {
//判断参数集合的长度是否大于0,说明大于0
if (table == null) { // 判断table是否已经初始化 第一次操作没有初始化
// 未初始化,s为m的实际元素个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ? (int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
float ft = ((float)s / loadFactor) + 1.0F;
这一行代码中为什么要加 1.0F ?
s/loadFactor 的结果是小数,加 1.0F 与 (int)ft 相当于是对小数做一个向上取整以尽可能的保证更大容量,更大的容量能够减少 resize 的调用次数。所以 + 1.0F 是为了获取更大的容量。
例如:原来集合的元素个数是 6 个,那么 6/0.75 是8,是 2 的n次幂,那么新的数组大小就是 8 了。然后原来数组的数据就会存储到长度是 8 的新的数组中了,这样会导致在存储元素的时候,容量不够,还得继续扩容,那么性能降低了,而如果 +1 呢,数组长度直接变为16了,这样可以减少数组的扩容。
+1省去一次扩容需要的时间
4.3成员方法
put方法是比较复杂的,实现步骤大致如下:
1)先通过hash值计算出key映射到哪个桶;
2)如果桶上没有碰撞冲突,则直接插入;
3)如果出现碰撞冲突了,则需要处理冲突:
a:如果该桶使用红黑树处理冲突,则调用红黑树的方法插入数据;
b:否则采用传统的链式方法插入。如果链的长度达到临界值,则把链转变为红黑树;
4)如果桶中存在重复的键,则为该键替换新值value;
5)如果size大于阈值threshold,则进行扩容;
具体的方法如下:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
1 HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。 所以我们重点看putVal方法。
2 我们可以看到在putVal()方法中key在这里执行了一下hash()方法,来看一下Hash方法是如何实现的。
static final int hash(Object key) {
int h;
1)如果key等于null:
可以看到当key等于null的时候也是有哈希值的,返回的是0.
2)如果key不等于null:
首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的 hash值
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
从上面可以得知HashMap是支持Key为空的,而HashTable是直接用Key来获取HashCode所以key为空会抛异常。
{其实上面就已经解释了为什么HashMap的长度为什么要是2的幂因为HashMap 使用的方法很巧妙,它通过 hash & (table.length -1)来得到该对象的保存位,前面说过 HashMap 底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当 length 总是2的n次方时,hash & (length-1)运算等价于对 length 取模,也就是hash%length,但是&比%具有更高的效率。比如 n % 32 = n & (32 -1)。}
解读上述hash方法:
我们先研究下key的哈希值是如何计算出来的。key的哈希值是通过上述方法计算出来的。
这个哈希方法首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的 hash值。计算过程如下所示:
static final int hash(Object key) {
int h;
1)如果key等于null:
可以看到当key等于null的时候也是有哈希值的,返回的是0.
2)如果key不等于null:
首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的 hash值
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
在putVal函数中使用到了上述hash函数计算的哈希值:
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {
。。。。。。。。。。。。。。
if ((p = tab[i = (n - 1) & hash]) == null)//这里的n表示数组长度16
。。。。。。。。。。。。。。
计算过程如下所示:
说明:
1)key.hashCode();返回散列值也就是hashcode。假设随便生成的一个值。
2)n表示数组初始化的长度是16
3)&(按位与运算):运算规则:相同的二进制数位上,都是1的时候,结果为1,否则为零。
4)^(按位异或运算):运算规则:相同的二进制数位上,数字相同,结果为0,不同为1。
简单来说就是:
高16 bit 不变,低16 bit 和高16 bit 做了一个异或(得到的 hashcode 转化为32位二进制,前16位和后16位低16 bit和高16 bit做了一个异或)
问题:为什么要这样操作呢?
如果当n即数组长度很小,假设是16的话,那么n-1即为 ---》1111 ,这样的值和hashCode()直接做按位与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,这样就很容易造成哈希冲突了,所以这里把高低位都利用起来,从而解决了这个问题。
例如上述:
hashCode()值: 1111 1111 1111 1111 1111 0000 1110 1010
n-1即16-1--》15: 。。。。。。。。。。。。。。。。。。。。。。1111
-------------------------------------------------------------------
0000 0000 0000 0000 0000 0000 0000 1010 ----》10作为索引
其实就是将hashCode值作为数组索引,那么如果下个高位hashCode不一致,低位一致的话,就会造成计算的索引还是10,从而造成了哈希冲突了。降低性能。
(n-1) & hash = -> 得到下标 (n-1) n表示数组长度16,n-1就是15
取余数本质是不断做除法,把剩余的数减去,运算效率要比位运算低。
现在看putVal()方法,看看它到底做了什么。
主要参数:
hash key的hash值
key 原始Key
value 要存放的值
onlyIfAbsent 如果true代表不更改现有的值
evict 如果为false表示table为创建状态
putVal()方法源代码如下所示:
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
1)transient Node<K,V>[] table; 表示存储Map集合中元素的数组。
2)(tab = table) == null 表示将空的table赋值给tab,然后判断tab是否等于null,第一次肯定是 null
3)(n = tab.length) == 0 表示将数组的长度0赋值给n,然后判断n是否等于0,n等于0
由于if判断使用双或,满足一个即可,则执行代码 n = (tab = resize()).length; 进行数组初始化。
并将初始化好的数组长度赋值给n.
4)执行完n = (tab = resize()).length,数组tab每个空间都是null
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
1)i = (n - 1) & hash 表示计算数组的索引赋值给i,即确定元素存放在哪个桶中
2)p = tab[i = (n - 1) & hash]表示获取计算出的位置的数据赋值给节点p
3) (p = tab[i = (n - 1) & hash]) == null 判断节点位置是否等于null,如果为null,则执行代 码:tab[i] = newNode(hash, key, value, null);根据键值对创建新的节点放入该位置的桶中
小结:如果当前桶没有哈希碰撞冲突,则直接把键值对插入空间位置
if ((p = tab[i = (n - 1) & hash]) == null)
//创建一个新的节点存入到桶中
tab[i] = newNode(hash, key, value, null);
else {
// 执行else说明tab[i]不等于null,表示这个位置已经有值了。
Node<K,V> e; K k;
比较桶中第一个元素(数组中的结点)的hash值和key是否相等
1)p.hash == hash :p.hash表示原来存在数据的hash值 hash表示后添加数据的hash值 比较两个 hash值是否相等
说明:p表示tab[i],即 newNode(hash, key, value, null)方法返回的Node对象。
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next)
return new Node<>(hash, key, value, next);
而在Node类中具有成员变量hash用来记录着之前数据的hash值的
2)(k = p.key) == key :p.key获取原来数据的key赋值给k key 表示后添加数据的key 比较两 个key的地址值是否相等
3)key != null && key.equals(k):能够执行到这里说明两个key的地址值不相等,那么先判断后 添加的key是否等于null,如果不等于null再调用equals方法判断两个key的内容是否相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
说明:两个元素哈希值相等,并且key的值也相等
将旧的元素整体对象赋值给e,用e来记录
e = p;
// hash值不相等或者key不相等;判断p是否为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 说明是链表节点
else {
1)如果是链表的话需要遍历到最后节点然后插入
2)采用循环遍历的方式,判断链表中是否有重复的key
for (int binCount = 0; ; ++binCount) {
1)e = p.next 获取p的下一个元素赋值给e
2)(e = p.next) == null 判断p.next是否等于null,等于null,说明p没有下一个元 素,那么此时到达了链表的尾部,还没有找到重复的key,则说明HashMap没有包含该键
将该键值对插入链表中
if ((e = p.next) == null) {
1)创建一个新的节点插入到尾部
p.next = newNode(hash, key, value, null);
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next)
return new Node<>(hash, key, value, next);
注意第四个参数next是null,因为当前元素插入到链表末尾了,那么下一个节点肯定是 null
2)这种添加方式也满足链表数据结构的特点,每次向后添加新的元素
p.next = newNode(hash, key, value, null);
1)节点添加完成之后判断此时节点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于
则将链表转换为红黑树
2)int binCount = 0 :表示for循环的初始化值。从0开始计数。记录着遍历节点的个 数。值是0表示第一个节点,1表示第二个节点。。。。7表示第八个节点,加上数组中的的一 个元素,元素个数是9
TREEIFY_THRESHOLD - 1 --》8 - 1 ---》7
如果binCount的值是7(加上数组中的的一个元素,元素个数是9)
TREEIFY_THRESHOLD - 1也是7,此时转换红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//转换为红黑树
treeifyBin(tab, hash);
// 跳出循环
break;
执行到这里说明e = p.next 不是null,不是最后一个元素。继续判断链表中结点的key值与插 入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
要添加的元素和链表中的存在的元素的key相等了,则跳出for循环。不用再继续比较了
直接执行下面的if语句去替换去 if (e != null)
break;
说明新添加的元素和当前节点不相等,继续查找下一个节点。
用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
表示在桶中找到key值、hash值与插入元素相等的结点
也就是说通过上面的操作找到了重复的键,所以这里就是把该键的值变为新的值,并返回旧值
这里完成了put方法的修改功能
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
//e.value 表示旧值 value表示新值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
//修改记录次数
++modCount;
// 判断实际大小是否大于threshold阈值,如果超过则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
将链表转换为红黑树的treeifyBin方法
节点添加完成之后判断此时节点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树,转换红黑树的方法 treeifyBin,整体代码如下:
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//转换为红黑树 tab表示数组名 hash表示哈希值
treeifyBin(tab, hash);
treeifyBin方法如下所示:
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
替换指定哈希表的索引处桶中的所有链接节点,除非表太小,否则将修改大小。
Node<K,V>[] tab = tab 数组名
int hash = hash表示哈希值
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
如果当前数组为空或者数组的长度小于进行树形化的阈值(MIN_TREEIFY_CAPACITY = 64),
就去扩容。而不是将节点变为红黑树。
目的:如果数组很小,那么转换红黑树,然后遍历效率要低一些。这时进行扩容,那么重新计算哈希值
,链表长度有可能就变短了,数据会放到数组中,这样相对来说效率高一些。
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
//扩容方法
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
1)执行到这里说明哈希表中的数组长度大于阈值64,开始进行树形化
2)e = tab[index = (n - 1) & hash]表示将数组中的元素取出赋值给e,e是哈希表中指定位 置桶里的链表节点,从第一个开始
//hd:红黑树的头结点 tl :红黑树的尾结点
TreeNode<K,V> hd = null, tl = null;
//新创建一个树的节点,内容和当前链表节点e一致
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
//将新创键的p节点赋值给红黑树的头结点
hd = p;
else {
p.prev = tl:将上一个节点p赋值给现在的p的前一个节点
tl.next = p;将现在节点p作为树的尾结点的下一个节点
p.prev = tl;
tl.next = p;
tl = p;
e = e.next 将当前节点的下一个节点赋值给e,如果下一个节点不等于null
则回到上面继续取出链表中节点转换为红黑树
} while ((e = e.next) != null);
让桶中的第一个元素即数组中的元素指向新建的红黑树的节点,以后这个桶里的元素就是红黑树
而不是链表数据结构了
if ((tab[index] = hd) != null)
hd.treeify(tab);
小结:上述操作一共做了如下几件事:
1.根据哈希表中元素个数确定是扩容还是树形化
2.如果是树形化遍历桶中的元素,创建相同个数的树形节点,复制内容,建立起联系
3.然后让桶中的第一个元素指向新创建的树根节点,替换桶的链表内容为树形化内容
扩容方法_resize
想要了解HashMap的扩容机制你要有这两个问题
1.什么时候才需要扩容
2.HashMap的扩容是什么
1.什么时候才需要扩容
当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。
当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,节点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的节点个数低于6,也会再把树转换为链表。
上述两种情况下都会进行扩容。
2.HashMap的扩容是什么
进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。
HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。
怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:
因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化:
说明:5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。
因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:
正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,在resize的过程中保证了rehash之后每个桶上的节点数一定小于等于原来桶上的节点数,保证了rehash之后不会出现更严重的hash冲突,均匀的把之前的冲突的节点分散到新的桶中了。
源码resize方法的解读
下面是代码的具体实现:
final Node<K,V>[] resize() {
//得到当前数组
Node<K,V>[] oldTab = table;
//如果当前数组等于null长度返回0,否则返回当前数组的长度
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前阀值点 默认是12(16*0.75)
int oldThr = threshold;
int newCap, newThr = 0;
//如果老的数组长度大于0
//开始计算扩容后的大小
if (oldCap > 0) {
// 超过最大值就不再扩充了,就只好随你碰撞去吧
if (oldCap >= MAXIMUM_CAPACITY) {
//修改阈值为int的最大值
threshold = Integer.MAX_VALUE;
return oldTab;
没超过最大值,就扩充为原来的2倍
1)(newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
//阈值扩大一倍
newThr = oldThr << 1; // double threshold
//老阈值点大于0 直接赋值
else if (oldThr > 0) // 老阈值赋值给新的数组长度
newCap = oldThr;
else {// 直接使用默认值
newCap = DEFAULT_INITIAL_CAPACITY;//16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
// 计算新的resize最大上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
//新的阀值 默认原来是12 乘以2之后变为24
threshold = newThr;
//创建新的哈希表
@SuppressWarnings({"rawtypes","unchecked"})
//newCap是新的数组长度--》32
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
//判断旧数组是否等于空
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
//遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
//原来的数据赋值为null 便于GC回收
oldTab[j] = null;
//判断数组是否有下一个引用
if (e.next == null)
//没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
newTab[e.hash & (newCap - 1)] = e;
//判断是否是红黑树
else if (e instanceof TreeNode)
//说明是红黑树来处理冲突的,则调用相关方法把树分开
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 采用链表处理冲突
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
//通过上述讲解的原理来计算节点的新位置
// 原索引
next = e.next;
//这里来判断如果等于true e这个节点在resize之后不需要移动位置
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
loTail.next = e;
loTail = e;
// 原索引+oldCap
else {
if (hiTail == null)
hiHead = e;
hiTail.next = e;
hiTail = e;
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
return newTab;
删除方法(remove)
理解了put方法之后,remove方法已经没什么难度了,所以重复的内容就不再做详细介绍了。
删除的话就是首先先找到元素的位置,如果是链表就遍历链表找到元素之后删除。如果是用红黑树就遍历树然后找到之后做删除,树小于6的时候要转链表。
删除remove方法:
//remove方法的具体实现在removeNode方法中,所以我们重点看下removeNode方法
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
removeNode方法:
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//根据hash找到位置
//如果当前key映射到的桶不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
//如果桶上的节点就是要找的key,则将node指向该节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
//说明节点存在下一个节点
if (p instanceof TreeNode)
//说明是以红黑树来处理的冲突,则获取红黑树要删除的节点
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
//判断是否以链表方式处理hash冲突,是的话则通过遍历链表来寻找要删除的节点
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
p = e;
} while ((e = e.next) != null);
//比较找到的key的value和要删除的是否匹配
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
//通过调用红黑树的方法来删除节点
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
//链表删除
tab[index] = node.next;
p.next = node.next;
//记录修改次数
++modCount;
//变动的数量
--size;
afterNodeRemoval(node);
return node;
return null;
查找元素方法(get)
查找方法,通过元素的Key找到Value。
代码如下:
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
get方法主要调用的是getNode方法,代码如下:
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果哈希表不为空并且key对应的桶上不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
判断数组元素是否相等
根据索引的位置检查第一个元素
注意:总是检查第一个元素
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 如果不是第一个元素,判断是否有后续节点
if ((e = first.next) != null) {
// 判断是否是红黑树,是的话调用红黑树中的getTreeNode方法获取节点
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 不是红黑树的话,那就是链表结构了,通过循环的方法判断链表中是否存在该key
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
return null;
1.get方法实现的步骤:
1)通过hash值获取该key映射到的桶
2)桶上的key就是要查找的key,则直接找到并返回
3)桶上的key不是要找的key,则查看后续的节点:
a:如果后续节点是红黑树节点,通过调用红黑树的方法根据key获取value
b:如果后续节点是链表节点,则通过循环遍历链表根据key获取value
2.上述红黑树节点调用的是getTreeNode方法通过树形节点的find方法进行查找:
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;//找到之后直接返回
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
//递归查找
else if ((q = pr.find(h, k, kc)) != null)
return q;
p = pl;
} while (p != null);
return null;
3.查找红黑树,由于之前添加时已经保证这个树是有序的了,因此查找时基本就是折半查找,效率更高。
4.这里和插入时一样,如果对比节点的哈希值和要查找的哈希值相等,就会判断key是否相等,相等就直接返回。不相等就从子树中递归查找。
若为树,则在树中通过key.equals(k)查找,O(logn)
若为链表,则在链表中通过key.equals(k)查找,O(n)。
遍历HashMap集合几种方式
1、分别遍历Key和Values
2、使用Iterator迭代器迭代
3、通过get方式(不建议使用)
说明:根据阿里开发手册,不建议使用这种方式,因为迭代两次。keySet获取Iterator一次,还有通过get又迭代一次。降低性能。
4.jdk8以后使用Map接口中的默认方法:
default void forEach(BiConsumer<? super K,? super V> action)
BiConsumer接口中的方法:
void accept(T t, U u) 对给定的参数执行此操作。
t - 第一个输入参数
u - 第二个输入参数
遍历代码:
public class Demo02 {
public static void main(String[] args) {
HashMap<String,String> m1 = new HashMap();
m1.put("001", "zhangsan");
m1.put("002", "lisi");
m1.forEach((key,value)->{
System.out.println(key+"---"+value);
5.如何设计多个非重复的键值对要存储HashMap的初始化?
5.1HashMap的初始化问题描述
如果我们确切的知道我们有多少键值对需要存储,那么我们在初始化HashMap的时候就应该指定它的容量,以防止HashMap自动扩容,影响使用效率。
默认情况下HashMap的容量是16,但是,如果用户通过构造函数指定了一个数字作为容量,那么Hash会选择大于该数字的第一个2的幂作为容量。(3->4、7->8、9->16) .这点我们在上述已经进行过讲解。
《阿里巴巴Java开发手册》中建议我们设置HashMap的初始化容量。
那么,为什么要这么建议?你有想过没有。
当然,以上建议也是有理论支撑的。我们上面介绍过,HashMap的扩容机制,就是当达到扩容条件时会进行扩容。HashMap的扩容条件就是当HashMap中的元素个数(size)超过临界值(threshold)时就会自动扩容。在HashMap中,threshold = loadFactor * capacity。
所以,如果我们没有设置初始容量大小,随着元素的不断增加,HashMap会有可能发生多次扩容,而HashMap中的扩容机制决定了每次扩容都需要重建hash表,是非常影响性能的。
但是设置初始化容量,设置的数值不同也会影响性能,那么当我们已知HashMap中即将存放的KV个数的时候,容量设置成多少为好呢?
5.2HashMap中容量的初始化
当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?
关于这个值的设置,在《阿里巴巴Java开发手册》有以下建议:
也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。我们应该尽量减少扩容。原因也已经分析过。
如果我们通过initialCapacity/ 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。
当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成initialCapacity/0.75 + 1的话,可以有效的减少冲突也可以减小误差。
所以,我可以认为,当我们明确知道HashMap中元素的个数的时候,把默认容量设置成initialCapacity/ 0.75F + 1.0F是一个在性能上相对好的选择,但是,同时也会牺牲些内存。
我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。
但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因也已经分析过。
但是,为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成initialCapacity/ 0.75F + 1.0F。