Overview
Improving the community Noah-MP® LSM to enhance WRF high-resolution climate modeling capabilities
A collaborative effort among NCAR, NCEP, NASA, and university groups has been established to develop and improve the community Noah-MP® LSM, which is a critical component in the operational National Water Model (NWM) and RAL/HAP WRF convection-permitting climate modeling efforts. To enhance its global applicability, the Noah-MP model was evaluated using snow and surface-heat-flux observations obtained from the Colorado Headwaters, Tibetan Plateau in China (Gao et al. 2015), and Boreal Ecosystem Research and Monitoring Sites (BERMS) in Canada (Chen et al. 2015). Based on these evaluations, numerous Noah-MP physics parameterizations have been improved such as canopy snow interception and sublimation for forested regions. New parameterizations of organic soil (Chen et al. 2016), sparse vegetation rhizosphere (Gao et al. 2015), simple nitrogen dynamics (Cai et al. 2016), and a dynamic crop-growth model (Liu et al. 2016) have been introduced to Noah-MP and evaluated against field observations.
Noah-MP®
Open-Source Community Land Surface Model. The 4 colors represents: Soil, Water, Vegetation, and Energy. The 4 big circle "C"s represent: Community, Collaborative, Comprehensive, Cutting-edge
Dynamical Downscaling Modeling (DDM) is important to understanding regional climate change and developing local mitigation strategies. The accuracy of DDM depends on the physical processes involved in the regional climate model as well as the forcing datasets derived from global models. We investigated the relative role of LSM and forcing datasets in the DDM over the Tibet Plateau (TP), a region complex in topography and vulnerable to climate change. Three WRF dynamical downscaling simulations configured with two land surface schemes (Noah versus Noah-MP) and two forcing datasets (CCSM vs ERA-Interim) were performed for the 1980 to 2005 period. The downscaled temperature and precipitation were evaluated with observations and inter-compared regarding temporal trends, spatial distributions, and climatology. Results show that the temporal trends of the temperature and precipitation are determined by the forcing datasets, and the forcing dataset with the smallest trend bias performs the best. Relative to the forcing datasets, land surface processes play a more critical role in the DDM over the TP due to the strong heating effects on the atmospheric circulation from a vast area at exceptionally high elevations (Figure). By changing the vertical profiles of temperature in the atmosphere and the horizontal patterns of moisture advection during the monsoon seasons, the land surface schemes significantly regulate the downscaled temperature and precipitation in terms of climatology and spatial patterns (Gao et al. 2016). This study emphasizes that the selection of land surface schemes is of crucial importance in the successful DDM over the TP.
Seasonally (dry and wet) and annualy (ann) averaged observed precipitation (OBS, a0-c0, unit: mm d-1), three simulations (a1-c3), relative biases of simulations (a4-c6, unit: %), and the annual cycle of the monthly precipitation relative bias of the three simulations (d, unit: %) compared to OBS. WRF1: ERA-I with Noah; WRF2: ERA-I with Noah-MP; and WRF3: CCSM with Noah-MP.
Product
Noah-MP is a land surface model (LSM) using multiple options for key land-atmosphere interaction processes (Niu et al., 2011). Noah-MP contains a separate vegetation canopy defined by a canopy top and bottom, crown radius, and leaves with prescribed dimensions, orientation, density, and radiometric properties. The canopy employs a two-stream radiation transfer approach along with shading effects necessary to achieve proper surface energy and water transfer processes including under-canopy snow processes (Dickinson, 1983; Niu and Yang, 2004). Noah-MP contains a multi-layer snow pack with liquid water storage and melt/refreeze capability and a snow-interception model describing loading/unloading, melt/refreeze capability, and sublimation of canopy-intercepted snow (Yang and Niu 2003; Niu and Yang 2004). Multiple options are available for surface water infiltration and runoff and groundwater transfer and storage including water table depth to an unconfined aquifer (Niu et al., 2007).
The Noah-MP model can be executed by prescribing both the horizontal and vertical density of vegetation using either ground- or satellite-based observations. Another available option is for prognostic vegetation growth that combines a Ball-Berry photosynthesis-based stomatal resistance (Ball et al., 1987) with a dynamic vegetation model (Dickinson et al. 1998) that allocates carbon to various parts of vegetation (leaf, stem, wood and root) and soil carbon pools (fast and slow). The model is capable of distinguishing between C3 and C4 photosynthesis pathways and defines vegetation-specific parameters for plant photosynthesis and respiration.
Description
The data come from Boston University, with some modifications by NCEP. NCEP has added new categories based on some other data sets, and has remapped certain categories to other indices.
Information from NCEP (ftp)
regarding their recategorization
Additional information from
Boston University
Download data from NCEP ftp server
Soil categories/textures (zip)
view graphics [topsoil] [bottom soil]
download data [topsoil] [bottom soil]
program
1-degree annual mean 2-meter air temperature (used in the model as bottom boundary layer conditions for soil models)
(62.53 KB)
Description
readme file
view graphics
download data
program
Information: See "Surface Fields" on
NCEP CPPA/GAPP web site
More information
from NCEP ftp server
Maximum albedo data
Description
He, C., P. Valayamkunnath, M. Barlage, F. Chen, D. Gochis, R. Cabell, T. Schneider, R. Rasmussen, G.-Y. Niu, Z.-L. Yang, D. Niyogi, and M. Ek (2023): Modernizing the open-source community Noah-MP land surface model (version 5.0) with enhanced modularity, interoperability, and applicability, GMD, to be submitted.
Noah-MP Version 1.1
(as implemented in WRFv3.4.1) |
Readme
|
Changes to Noah-MP v1.1 since Noah-MP v1.0
August 2012
Offline 1D Noah-MP LSM v1.1 driver program (with sample dataset)
|
Readme
02 Oct 2012
Noah-MP Version 1.0
(as implemented in WRFv3.4) |
Readme
April 2012
Offline 1D Noah-MP LSM v1.0 driver program (with sample dataset)
|
Readme
April 2012
NCAR Homepage
ACOM | Atmospheric Chemistry Observations & Modeling
CGD | Climate & Global Dynamics
CISL | Computational & Information Systems
EdEC | Education, Engagement & Early-Career Development
EOL | Earth Observing Laboratory
HAO | High Altitude Observatory
MMM | Mesoscale & Microscale Meteorology
RAL | Research Applications Laboratory
This material is based upon work supported by the NSF National Center for Atmospheric Research, a major facility sponsored by the U.S. National Science Foundation and managed by the University Corporation for Atmospheric Research. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation.