添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

User Reference

This is the User Reference for the OSMnx package. If you are looking for an introduction to OSMnx, read the Getting Started guide. This guide describes the usage of OSMnx’s public API.

OSMnx 2.0 is in beta: read the migration guide .

osmnx.bearing module

Calculate graph edge bearings.

osmnx.bearing. add_edge_bearings ( G , precision = None )

Add compass bearing attributes to all graph edges.

Vectorized function to calculate (initial) bearing from origin node to destination node for each edge in a directed, unprojected graph then add these bearings as new edge attributes. Bearing represents angle in degrees (clockwise) between north and the geodesic line from the origin node to the destination node. Ignores self-loop edges as their bearings are undefined.

Parameters :
  • G ( networkx.MultiDiGraph ) – unprojected graph

  • precision ( int ) – deprecated, do not use

  • Returns :

    G – graph with edge bearing attributes

    Return type :

    networkx.MultiDiGraph

    osmnx.bearing. calculate_bearing ( lat1 , lon1 , lat2 , lon2 )

    Calculate the compass bearing(s) between pairs of lat-lon points.

    Vectorized function to calculate initial bearings between two points’ coordinates or between arrays of points’ coordinates. Expects coordinates in decimal degrees. Bearing represents the clockwise angle in degrees between north and the geodesic line from (lat1, lon1) to (lat2, lon2).

    Parameters :
  • lat1 ( float or numpy.array of float ) – first point’s latitude coordinate

  • lon1 ( float or numpy.array of float ) – first point’s longitude coordinate

  • lat2 ( float or numpy.array of float ) – second point’s latitude coordinate

  • lon2 ( float or numpy.array of float ) – second point’s longitude coordinate

  • Returns :

    bearing – the bearing(s) in decimal degrees

    Return type :

    float or numpy.array of float

    osmnx.bearing. orientation_entropy ( Gu , num_bins = 36 , min_length = 0 , weight = None )

    Calculate undirected graph’s orientation entropy.

    Orientation entropy is the entropy of its edges’ bidirectional bearings across evenly spaced bins. Ignores self-loop edges as their bearings are undefined.

    For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

    Parameters :
  • Gu ( networkx.MultiGraph ) – undirected, unprojected graph with bearing attributes on each edge

  • num_bins ( int ) – number of bins; for example, if num_bins=36 is provided, then each bin will represent 10 degrees around the compass

  • min_length ( float ) – ignore edges with length attributes less than min_length ; useful to ignore the noise of many very short edges

  • weight ( string ) – if not None, weight edges’ bearings by this (non-null) edge attribute. for example, if “length” is provided, this will return 1 bearing observation per meter per street, which could result in a very large bearings array.

  • Returns :

    entropy – the graph’s orientation entropy

    Return type :

    float

    osmnx.bearing. plot_orientation ( Gu , num_bins = 36 , min_length = 0 , weight = None , ax = None , figsize = (5, 5) , area = True , color = '#003366' , edgecolor = 'k' , linewidth = 0.5 , alpha = 0.7 , title = None , title_y = 1.05 , title_font = None , xtick_font = None )

    Do not use: deprecated.

    The plot_orientation function moved to the plot module. Calling it via the bearing module will raise an error starting in the v2.0.0 release.

    Parameters :
  • Gu ( networkx.MultiGraph ) – deprecated, do not use

  • num_bins ( int ) – deprecated, do not use

  • min_length ( float ) – deprecated, do not use

  • weight ( string ) – deprecated, do not use

  • ax ( matplotlib.axes.PolarAxesSubplot ) – deprecated, do not use

  • figsize ( tuple ) – deprecated, do not use

  • area ( bool ) – deprecated, do not use

  • color ( string ) – deprecated, do not use

  • edgecolor ( string ) – deprecated, do not use

  • linewidth ( float ) – deprecated, do not use

  • alpha ( float ) – deprecated, do not use

  • title ( string ) – deprecated, do not use

  • title_y ( float ) – deprecated, do not use

  • title_font ( dict ) – deprecated, do not use

  • xtick_font ( dict ) – deprecated, do not use

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.convert. graph_from_gdfs ( gdf_nodes , gdf_edges , graph_attrs = None )

    Convert node and edge GeoDataFrames to a MultiDiGraph.

    This function is the inverse of graph_to_gdfs and is designed to work in conjunction with it.

    However, you can convert arbitrary node and edge GeoDataFrames as long as 1) gdf_nodes is uniquely indexed by osmid , 2) gdf_nodes contains x and y coordinate columns representing node geometries, 3) gdf_edges is uniquely multi-indexed by u , v , key (following normal MultiDiGraph structure). This allows you to load any node/edge shapefiles or GeoPackage layers as GeoDataFrames then convert them to a MultiDiGraph for graph analysis. Note that any geometry attribute on gdf_nodes is discarded since x and y provide the necessary node geometry information instead.

    Parameters :
  • gdf_nodes ( geopandas.GeoDataFrame ) – GeoDataFrame of graph nodes uniquely indexed by osmid

  • gdf_edges ( geopandas.GeoDataFrame ) – GeoDataFrame of graph edges uniquely multi-indexed by u, v, key

  • graph_attrs ( dict ) – the new G.graph attribute dict. if None, use crs from gdf_edges as the only graph-level attribute (gdf_edges must have crs attribute set)

  • Returns :
    Return type :

    networkx.MultiDiGraph

    osmnx.convert. graph_to_gdfs ( G , nodes = True , edges = True , node_geometry = True , fill_edge_geometry = True )

    Convert a MultiDiGraph to node and/or edge GeoDataFrames.

    This function is the inverse of graph_from_gdfs .

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • nodes ( bool ) – if True, convert graph nodes to a GeoDataFrame and return it

  • edges ( bool ) – if True, convert graph edges to a GeoDataFrame and return it

  • node_geometry ( bool ) – if True, create a geometry column from node x and y attributes

  • fill_edge_geometry ( bool ) – if True, fill in missing edge geometry fields using nodes u and v

  • Returns :

    gdf_nodes or gdf_edges or tuple of (gdf_nodes, gdf_edges). gdf_nodes is indexed by osmid and gdf_edges is multi-indexed by u, v, key following normal MultiDiGraph structure.

    Return type :

    geopandas.GeoDataFrame or tuple

    osmnx.convert. to_digraph ( G , weight = 'length' )

    Convert MultiDiGraph to DiGraph.

    Chooses between parallel edges by minimizing weight attribute value. Note: see also to_undirected to convert MultiDiGraph to MultiGraph.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • weight ( string ) – attribute value to minimize when choosing between parallel edges

  • Return type :

    networkx.DiGraph

    osmnx.convert. to_undirected ( G )

    Convert MultiDiGraph to undirected MultiGraph.

    Maintains parallel edges only if their geometries differ. Note: see also to_digraph to convert MultiDiGraph to DiGraph.

    Parameters :

    G ( networkx.MultiDiGraph ) – input graph

    Return type :

    networkx.MultiGraph

    osmnx.distance. add_edge_lengths ( G , precision = None , edges = None )

    Add length attribute (in meters) to each edge.

    Vectorized function to calculate great-circle distance between each edge’s incident nodes. Ensure graph is in unprojected coordinates, and unsimplified to get accurate distances.

    Note: this function is run by all the graph.graph_from_x functions automatically to add length attributes to all edges. It calculates edge lengths as the great-circle distance from node u to node v . When OSMnx automatically runs this function upon graph creation, it does it before simplifying the graph: thus it calculates the straight-line lengths of edge segments that are themselves all straight. Only after simplification do edges take on a (potentially) curvilinear geometry. If you wish to calculate edge lengths later, you are calculating straight-line distances which necessarily ignore the curvilinear geometry. You only want to run this function on a graph with all straight edges (such as is the case with an unsimplified graph).

    Parameters :
  • G ( networkx.MultiDiGraph ) – unprojected, unsimplified input graph

  • precision ( int ) – deprecated, do not use

  • edges ( tuple ) – tuple of (u, v, k) tuples representing subset of edges to add length attributes to. if None, add lengths to all edges.

  • Returns :

    G – graph with edge length attributes

    Return type :

    networkx.MultiDiGraph

    osmnx.distance. euclidean ( y1 , x1 , y2 , x2 )

    Calculate Euclidean distances between pairs of points.

    Vectorized function to calculate the Euclidean distance between two points’ coordinates or between arrays of points’ coordinates. For accurate results, use projected coordinates rather than decimal degrees.

    Parameters :
  • y1 ( float or numpy.array of float ) – first point’s y coordinate

  • x1 ( float or numpy.array of float ) – first point’s x coordinate

  • y2 ( float or numpy.array of float ) – second point’s y coordinate

  • x2 ( float or numpy.array of float ) – second point’s x coordinate

  • Returns :

    dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

    Return type :

    float or numpy.array of float

    osmnx.distance. euclidean_dist_vec ( y1 , x1 , y2 , x2 )

    Do not use, deprecated.

    The euclidean_dist_vec function has been renamed euclidean . Calling euclidean_dist_vec will raise an error in the v2.0.0 release.

    Parameters :
  • y1 ( float or numpy.array of float ) – first point’s y coordinate

  • x1 ( float or numpy.array of float ) – first point’s x coordinate

  • y2 ( float or numpy.array of float ) – second point’s y coordinate

  • x2 ( float or numpy.array of float ) – second point’s x coordinate

  • Returns :

    dist – distance from each (x1, y1) to each (x2, y2) in coordinates’ units

    Return type :

    float or numpy.array of float

    osmnx.distance. great_circle ( lat1 , lon1 , lat2 , lon2 , earth_radius = 6371009 )

    Calculate great-circle distances between pairs of points.

    Vectorized function to calculate the great-circle distance between two points’ coordinates or between arrays of points’ coordinates using the haversine formula. Expects coordinates in decimal degrees.

    Parameters :
  • lat1 ( float or numpy.array of float ) – first point’s latitude coordinate

  • lon1 ( float or numpy.array of float ) – first point’s longitude coordinate

  • lat2 ( float or numpy.array of float ) – second point’s latitude coordinate

  • lon2 ( float or numpy.array of float ) – second point’s longitude coordinate

  • earth_radius ( float ) – earth’s radius in units in which distance will be returned (default is meters)

  • Returns :

    dist – distance from each (lat1, lon1) to each (lat2, lon2) in units of earth_radius

    Return type :

    float or numpy.array of float

    osmnx.distance. great_circle_vec ( lat1 , lng1 , lat2 , lng2 , earth_radius = 6371009 )

    Do not use, deprecated.

    The great_circle_vec function has been renamed great_circle . Calling great_circle_vec will raise an error in the v2.0.0 release.

    Parameters :
  • lat1 ( float or numpy.array of float ) – first point’s latitude coordinate

  • lng1 ( float or numpy.array of float ) – first point’s longitude coordinate

  • lat2 ( float or numpy.array of float ) – second point’s latitude coordinate

  • lng2 ( float or numpy.array of float ) – second point’s longitude coordinate

  • earth_radius ( float ) – earth’s radius in units in which distance will be returned (default is meters)

  • Returns :

    dist – distance from each (lat1, lng1) to each (lat2, lng2) in units of earth_radius

    Return type :

    float or numpy.array of float

    osmnx.distance. k_shortest_paths ( G , orig , dest , k , weight = 'length' )

    Do not use, deprecated.

    The k_shortest_paths function has moved to the routing module. Calling it via the distance module will raise an error in the v2.0.0 release.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • orig ( int ) – origin node ID

  • dest ( int ) – destination node ID

  • k ( int ) – number of shortest paths to solve

  • weight ( string ) – edge attribute to minimize when solving shortest paths. default is edge length in meters.

  • Yields :

    path ( list ) – a generator of k shortest paths ordered by total weight. each path is a list of node IDs.

    osmnx.distance. nearest_edges ( G , X , Y , interpolate = None , return_dist = False )

    Find the nearest edge to a point or to each of several points.

    If X and Y are single coordinate values, this will return the nearest edge to that point. If X and Y are lists of coordinate values, this will return the nearest edge to each point. This function uses an R-tree spatial index and minimizes the euclidean distance from each point to the possible matches. For accurate results, use a projected graph and points.

    Parameters :
  • G ( networkx.MultiDiGraph ) – graph in which to find nearest edges

  • X ( float or list ) – points’ x (longitude) coordinates, in same CRS/units as graph and containing no nulls

  • Y ( float or list ) – points’ y (latitude) coordinates, in same CRS/units as graph and containing no nulls

  • interpolate ( float ) – deprecated, do not use

  • return_dist ( bool ) – optionally also return distance between points and nearest edges

  • Returns :

    ne or (ne, dist) – nearest edges as (u, v, key) or optionally a tuple where dist contains distances between the points and their nearest edges

    Return type :

    tuple or list

    osmnx.distance. nearest_nodes ( G , X , Y , return_dist = False )

    Find the nearest node to a point or to each of several points.

    If X and Y are single coordinate values, this will return the nearest node to that point. If X and Y are lists of coordinate values, this will return the nearest node to each point.

    If the graph is projected, this uses a k-d tree for euclidean nearest neighbor search, which requires that scipy is installed as an optional dependency. If it is unprojected, this uses a ball tree for haversine nearest neighbor search, which requires that scikit-learn is installed as an optional dependency.

    Parameters :
  • G ( networkx.MultiDiGraph ) – graph in which to find nearest nodes

  • X ( float or list ) – points’ x (longitude) coordinates, in same CRS/units as graph and containing no nulls

  • Y ( float or list ) – points’ y (latitude) coordinates, in same CRS/units as graph and containing no nulls

  • return_dist ( bool ) – optionally also return distance between points and nearest nodes

  • Returns :

    nn or (nn, dist) – nearest node IDs or optionally a tuple where dist contains distances between the points and their nearest nodes

    Return type :

    int/list or tuple

    osmnx.distance. shortest_path ( G , orig , dest , weight = 'length' , cpus = 1 )

    Do not use, deprecated.

    The shortest_path function has moved to the routing module. Calling it via the distance module will raise an error in the v2.0.0 release.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • orig ( int or list ) – origin node ID, or a list of origin node IDs

  • dest ( int or list ) – destination node ID, or a list of destination node IDs

  • weight ( string ) – edge attribute to minimize when solving shortest path

  • cpus ( int ) – how many CPU cores to use; if None, use all available

  • Returns :

    path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of path lists

    Return type :

    osmnx.elevation module

    Add node elevations from raster files or web APIs, and calculate edge grades.

    osmnx.elevation. add_edge_grades ( G , add_absolute = True , precision = None )

    Add grade attribute to each graph edge.

    Vectorized function to calculate the directed grade (ie, rise over run) for each edge in the graph and add it to the edge as an attribute. Nodes must already have elevation attributes to use this function.

    See also the add_node_elevations_raster and add_node_elevations_google functions.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph with elevation node attribute

  • add_absolute ( bool ) – if True, also add absolute value of grade as grade_abs attribute

  • precision ( int ) – deprecated, do not use

  • Returns :

    G – graph with edge grade (and optionally grade_abs ) attributes

    Return type :

    networkx.MultiDiGraph

    osmnx.elevation. add_node_elevations_google ( G , api_key = None , batch_size = 350 , pause = 0 , max_locations_per_batch = None , precision = None , url_template = None )

    Add an elevation (meters) attribute to each node using a web service.

    By default, this uses the Google Maps Elevation API but you can optionally use an equivalent API with the same interface and response format, such as Open Topo Data, via the settings module’s elevation_url_template . The Google Maps Elevation API requires an API key but other providers may not.

    For a free local alternative see the add_node_elevations_raster function. See also the add_edge_grades function.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • api_key ( string ) – a valid API key, can be None if the API does not require a key

  • batch_size ( int ) – max number of coordinate pairs to submit in each API call (if this is too high, the server will reject the request because its character limit exceeds the max allowed)

  • pause ( float ) – time to pause between API calls, which can be increased if you get rate limited

  • max_locations_per_batch ( int ) – deprecated, do not use

  • precision ( int ) – deprecated, do not use

  • url_template ( string ) – deprecated, do not use

  • Returns :

    G – graph with node elevation attributes

    Return type :

    networkx.MultiDiGraph

    osmnx.elevation. add_node_elevations_raster ( G , filepath , band = 1 , cpus = None )

    Add elevation attribute to each node from local raster file(s).

    If filepath is a list of paths, this will generate a virtual raster composed of the files at those paths as an intermediate step.

    See also the add_edge_grades function.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph, in same CRS as raster

  • filepath ( string or pathlib.Path or list of strings/Paths ) – path (or list of paths) to the raster file(s) to query

  • band ( int ) – which raster band to query

  • cpus ( int ) – how many CPU cores to use; if None, use all available

  • Returns :

    G – graph with node elevation attributes

    Return type :

    networkx.MultiDiGraph

    osmnx.features module

    Download OpenStreetMap geospatial features’ geometries and attributes.

    Retrieve points of interest, building footprints, transit lines/stops, or any other map features from OSM, including their geometries and attribute data, then construct a GeoDataFrame of them. You can use this module to query for nodes, ways, and relations (the latter of type “multipolygon” or “boundary” only) by passing a dictionary of desired OSM tags.

    For more details, see https://wiki.openstreetmap.org/wiki/Map_features and https://wiki.openstreetmap.org/wiki/Elements

    Refer to the Getting Started guide for usage limitations.

    osmnx.features. features_from_address ( address , tags , dist = 1000 )

    Create GeoDataFrame of OSM features within some distance N, S, E, W of address.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • address ( string ) – the address to geocode and use as the central point around which to get the features

  • tags ( dict ) – Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • dist ( numeric ) – distance in meters

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.features. features_from_bbox ( north = None , south = None , east = None , west = None , bbox = None , tags = None )

    Create a GeoDataFrame of OSM features within a N, S, E, W bounding box.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • north ( float ) – deprecated, do not use

  • south ( float ) – deprecated, do not use

  • east ( float ) – deprecated, do not use

  • west ( float ) – deprecated, do not use

  • bbox ( tuple of floats ) – bounding box as (north, south, east, west)

  • tags ( dict ) – Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.features. features_from_place ( query , tags , which_result = None , buffer_dist = None )

    Create GeoDataFrame of OSM features within boundaries of some place(s).

    The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get features within it using the features_from_address function, which geocodes the place name to a point and gets the features within some distance of that point.

    If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to the features_from_polygon function.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • query ( string or dict or list ) – the query or queries to geocode to get place boundary polygon(s)

  • tags ( dict ) – Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • which_result ( int ) – which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

  • buffer_dist ( float ) – deprecated, do not use

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.features. features_from_point ( center_point , tags , dist = 1000 )

    Create GeoDataFrame of OSM features within some distance N, S, E, W of a point.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • center_point ( tuple ) – the (lat, lon) center point around which to get the features

  • tags ( dict ) – Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • dist ( numeric ) – distance in meters

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.features. features_from_polygon ( polygon , tags )

    Create GeoDataFrame of OSM features within boundaries of a (multi)polygon.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • polygon ( shapely.geometry.Polygon or shapely.geometry.MultiPolygon ) – geographic boundaries to fetch features within

  • tags ( dict ) – Dict of tags used for finding elements in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.features. features_from_xml ( filepath , polygon = None , tags = None , encoding = 'utf-8' )

    Create a GeoDataFrame of OSM features in an OSM-formatted XML file.

    Because this function creates a GeoDataFrame of features from an OSM-formatted XML file that has already been downloaded (i.e. no query is made to the Overpass API) the polygon and tags arguments are not required. If they are not supplied to the function, features_from_xml() will return features for all of the tagged elements in the file. If they are supplied they will be used to filter the final GeoDataFrame.

    For more details, see: https://wiki.openstreetmap.org/wiki/Map_features

    Parameters :
  • filepath ( string or pathlib.Path ) – path to file containing OSM XML data

  • polygon ( shapely.geometry.Polygon ) – optional geographic boundary to filter elements

  • tags ( dict ) – optional dict of tags for filtering elements from the XML. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building , landuse , highway , etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.

  • encoding ( string ) – the XML file’s character encoding

  • Returns :
    Return type :

    geopandas.GeoDataFrame

    osmnx.geocoder module

    Geocode place names or addresses or retrieve OSM elements by place name or ID.

    This module uses the Nominatim API’s “search” and “lookup” endpoints. For more details see https://wiki.openstreetmap.org/wiki/Elements and https://nominatim.org/ .

    osmnx.geocoder. geocode ( query )

    Geocode place names or addresses to (lat, lon) with the Nominatim API.

    This geocodes the query via the Nominatim “search” endpoint.

    Parameters :

    query ( string ) – the query string to geocode

    Returns :

    point – the (lat, lon) coordinates returned by the geocoder

    Return type :

    tuple

    osmnx.geocoder. geocode_to_gdf ( query , which_result = None , by_osmid = False , buffer_dist = None )

    Retrieve OSM elements by place name or OSM ID with the Nominatim API.

    If searching by place name, the query argument can be a string or structured dict, or a list of such strings/dicts to send to the geocoder. This uses the Nominatim “search” endpoint to geocode the place name to the best-matching OSM element, then returns that element and its attribute data.

    You can instead query by OSM ID by passing by_osmid=True . This uses the Nominatim “lookup” endpoint to retrieve the OSM element with that ID. In this case, the function treats the query argument as an OSM ID (or list of OSM IDs), which must be prepended with their types: node (N), way (W), or relation (R) in accordance with the Nominatim API format. For example, query=[“R2192363”, “N240109189”, “W427818536”] .

    If query is a list, then which_result must be either a single value or a list with the same length as query . The queries you provide must be resolvable to elements in the Nominatim database. The resulting GeoDataFrame’s geometry column contains place boundaries if they exist.

    Parameters :
  • query ( string or dict or list of strings/dicts ) – query string(s) or structured dict(s) to geocode

  • which_result ( int ) – which search result to return. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one. to get the top match regardless of geometry type, set which_result=1. ignored if by_osmid=True.

  • by_osmid ( bool ) – if True, treat query as an OSM ID lookup rather than text search

  • buffer_dist ( float ) – deprecated, do not use

  • Returns :

    gdf – a GeoDataFrame with one row for each query

    Return type :

    geopandas.GeoDataFrame

    osmnx.graph module

    Download and create graphs from OpenStreetMap data.

    This module uses filters to query the Overpass API: you can either specify a built-in network type or provide your own custom filter with Overpass QL.

    Refer to the Getting Started guide for usage limitations.

    osmnx.graph. graph_from_address ( address , dist = 1000 , dist_type = 'bbox' , network_type = 'all' , simplify = True , retain_all = False , truncate_by_edge = False , return_coords = None , clean_periphery = None , custom_filter = None )

    Download and create a graph within some distance of an address.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    Parameters :
  • address ( string ) – the address to geocode and use as the central point around which to construct the graph

  • dist ( int ) – retain only those nodes within this many meters of the center of the graph

  • dist_type ( string {"network" , "bbox"} ) – if “bbox”, retain only those nodes within a bounding box of the distance parameter. if “network”, retain only those nodes within some network distance from the center-most node.

  • network_type ( string {"all" , "all_public" , "bike" , "drive" , "drive_service" , "walk"} ) – what type of street network to get if custom_filter is None

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • truncate_by_edge ( bool ) – if True, retain nodes outside bounding box if at least one of node’s neighbors is within the bounding box

  • return_coords ( bool ) – deprecated, do not use

  • clean_periphery ( bool ) – deprecated, do not use

  • custom_filter ( string ) – a custom ways filter to be used instead of the network_type presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional.

  • Return type :

    networkx.MultiDiGraph or optionally (networkx.MultiDiGraph, (lat, lon))

    Notes

    Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make multiple requests: see that function’s documentation for caveats.

    osmnx.graph. graph_from_bbox ( north = None , south = None , east = None , west = None , bbox = None , network_type = 'all' , simplify = True , retain_all = False , truncate_by_edge = False , clean_periphery = None , custom_filter = None )

    Download and create a graph within some bounding box.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    Parameters :
  • north ( float ) – deprecated, do not use

  • south ( float ) – deprecated, do not use

  • east ( float ) – deprecated, do not use

  • west ( float ) – deprecated, do not use

  • bbox ( tuple of floats ) – bounding box as (north, south, east, west)

  • network_type ( string {"all" , "all_public" , "bike" , "drive" , "drive_service" , "walk"} ) – what type of street network to get if custom_filter is None

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • truncate_by_edge ( bool ) – if True, retain nodes outside bounding box if at least one of node’s neighbors is within the bounding box

  • clean_periphery ( bool ) – deprecated, do not use

  • custom_filter ( string ) – a custom ways filter to be used instead of the network_type presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional.

  • Returns :
    Return type :

    networkx.MultiDiGraph

    Notes

    Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make multiple requests: see that function’s documentation for caveats.

    osmnx.graph. graph_from_place ( query , network_type = 'all' , simplify = True , retain_all = False , truncate_by_edge = False , which_result = None , buffer_dist = None , clean_periphery = None , custom_filter = None )

    Download and create a graph within the boundaries of some place(s).

    The query must be geocodable and OSM must have polygon boundaries for the geocode result. If OSM does not have a polygon for this place, you can instead get its street network using the graph_from_address function, which geocodes the place name to a point and gets the network within some distance of that point.

    If OSM does have polygon boundaries for this place but you’re not finding it, try to vary the query string, pass in a structured query dict, or vary the which_result argument to use a different geocode result. If you know the OSM ID of the place, you can retrieve its boundary polygon using the geocode_to_gdf function, then pass it to the graph_from_polygon function.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    Parameters :
  • query ( string or dict or list ) – the query or queries to geocode to get place boundary polygon(s)

  • network_type ( string {"all" , "all_public" , "bike" , "drive" , "drive_service" , "walk"} ) – what type of street network to get if custom_filter is None

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • truncate_by_edge ( bool ) – if True, retain nodes outside boundary polygon if at least one of node’s neighbors is within the polygon

  • which_result ( int ) – which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn’t return one.

  • buffer_dist ( float ) – deprecated, do not use

  • clean_periphery ( bool ) – deprecated, do not use

  • custom_filter ( string ) – a custom ways filter to be used instead of the network_type presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional.

  • Returns :
    Return type :

    networkx.MultiDiGraph

    Notes

    Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make multiple requests: see that function’s documentation for caveats.

    osmnx.graph. graph_from_point ( center_point , dist = 1000 , dist_type = 'bbox' , network_type = 'all' , simplify = True , retain_all = False , truncate_by_edge = False , clean_periphery = None , custom_filter = None )

    Download and create a graph within some distance of a (lat, lon) point.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    Parameters :
  • center_point ( tuple ) – the (lat, lon) center point around which to construct the graph

  • dist ( int ) – retain only those nodes within this many meters of the center of the graph, with distance determined according to dist_type argument

  • dist_type ( string {"network" , "bbox"} ) – if “bbox”, retain only those nodes within a bounding box of the distance parameter. if “network”, retain only those nodes within some network distance from the center-most node.

  • network_type ( string , {"all" , "all_public" , "bike" , "drive" , "drive_service" , "walk"} ) – what type of street network to get if custom_filter is None

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • truncate_by_edge ( bool ) – if True, retain nodes outside bounding box if at least one of node’s neighbors is within the bounding box

  • clean_periphery ( bool , ) – deprecated, do not use

  • custom_filter ( string ) – a custom ways filter to be used instead of the network_type presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional.

  • Returns :
    Return type :

    networkx.MultiDiGraph

    Notes

    Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make multiple requests: see that function’s documentation for caveats.

    osmnx.graph. graph_from_polygon ( polygon , network_type = 'all' , simplify = True , retain_all = False , truncate_by_edge = False , clean_periphery = None , custom_filter = None )

    Download and create a graph within the boundaries of a (multi)polygon.

    You can use the settings module to retrieve a snapshot of historical OSM data as of a certain date, or to configure the Overpass server timeout, memory allocation, and other custom settings.

    Parameters :
  • polygon ( shapely.geometry.Polygon or shapely.geometry.MultiPolygon ) – the shape to get network data within. coordinates should be in unprojected latitude-longitude degrees (EPSG:4326).

  • network_type ( string {"all" , "all_public" , "bike" , "drive" , "drive_service" , "walk"} ) – what type of street network to get if custom_filter is None

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • truncate_by_edge ( bool ) – if True, retain nodes outside boundary polygon if at least one of node’s neighbors is within the polygon

  • clean_periphery ( bool ) – deprecated, do not use

  • custom_filter ( string ) – a custom ways filter to be used instead of the network_type presets e.g., ‘[“power”~”line”]’ or ‘[“highway”~”motorway|trunk”]’. Also pass in a network_type that is in settings.bidirectional_network_types if you want graph to be fully bi-directional.

  • Returns :
    Return type :

    networkx.MultiDiGraph

    Notes

    Very large query areas use the utils_geo._consolidate_subdivide_geometry function to automatically make multiple requests: see that function’s documentation for caveats.

    osmnx.graph. graph_from_xml ( filepath , bidirectional = False , simplify = True , retain_all = False , encoding = 'utf-8' )

    Create a graph from data in a .osm formatted XML file.

    Do not load an XML file generated by OSMnx: this use case is not supported and may not behave as expected. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml functions instead.

    Parameters :
  • filepath ( string or pathlib.Path ) – path to file containing OSM XML data

  • bidirectional ( bool ) – if True, create bi-directional edges for one-way streets

  • simplify ( bool ) – if True, simplify graph topology with the simplify_graph function

  • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

  • encoding ( string ) – the XML file’s character encoding

  • Returns :
    Return type :

    networkx.MultiDiGraph

    osmnx.io. load_graphml ( filepath = None , graphml_str = None , node_dtypes = None , edge_dtypes = None , graph_dtypes = None )

    Load an OSMnx-saved GraphML file from disk or GraphML string.

    This function converts node, edge, and graph-level attributes (serialized as strings) to their appropriate data types. These can be customized as needed by passing in dtypes arguments providing types or custom converter functions. For example, if you want to convert some attribute’s values to bool , consider using the built-in ox.io._convert_bool_string function to properly handle “True”/”False” string literals as True/False booleans: ox.load_graphml(fp, node_dtypes={my_attr: ox.io._convert_bool_string}) .

    If you manually configured the all_oneway=True setting, you may need to manually specify here that edge oneway attributes should be type str .

    Note that you must pass one and only one of filepath or graphml_str . If passing graphml_str , you may need to decode the bytes read from your file before converting to string to pass to this function.

    Parameters :
  • filepath ( string or pathlib.Path ) – path to the GraphML file

  • graphml_str ( string ) – a valid and decoded string representation of a GraphML file’s contents

  • node_dtypes ( dict ) – dict of node attribute names:types to convert values’ data types. the type can be a python type or a custom string converter function.

  • edge_dtypes ( dict ) – dict of edge attribute names:types to convert values’ data types. the type can be a python type or a custom string converter function.

  • graph_dtypes ( dict ) – dict of graph-level attribute names:types to convert values’ data types. the type can be a python type or a custom string converter function.

  • Returns :
    Return type :

    networkx.MultiDiGraph

    osmnx.io. save_graph_geopackage ( G , filepath = None , encoding = 'utf-8' , directed = False )

    Save graph nodes and edges to disk as layers in a GeoPackage file.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • filepath ( string or pathlib.Path ) – path to the GeoPackage file including extension. if None, use default data folder + graph.gpkg

  • encoding ( string ) – the character encoding for the saved file

  • directed ( bool ) – if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph

  • Return type :
    osmnx.io. save_graph_shapefile ( G , filepath = None , encoding = 'utf-8' , directed = False )

    Do not use: deprecated. Use the save_graph_geopackage function instead.

    The Shapefile format is proprietary and outdated. Instead, use the superior GeoPackage file format via the save_graph_geopackage function. See http://switchfromshapefile.org/ for more information.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • filepath ( string or pathlib.Path ) – path to the shapefiles folder (no file extension). if None, use default data folder + graph_shapefile

  • encoding ( string ) – the character encoding for the saved files

  • directed ( bool ) – if False, save one edge for each undirected edge in the graph but retain original oneway and to/from information as edge attributes; if True, save one edge for each directed edge in the graph

  • Return type :
    osmnx.io. save_graph_xml ( data , filepath = None , node_tags = None , node_attrs = None , edge_tags = None , edge_attrs = None , oneway = None , merge_edges = None , edge_tag_aggs = None , api_version = None , precision = None , way_tag_aggs = None )

    Save graph to disk as an OSM-formatted XML .osm file.

    This function exists only to allow serialization to the .osm file format for applications that require it, and has constraints to conform to that. As such, this function has a limited use case which does not include saving/loading graphs for subsequent OSMnx analysis. To save/load graphs to/from disk for later use in OSMnx, use the io.save_graphml and io.load_graphml functions instead. To load a graph from a .osm file that you have downloaded or generated elsewhere, use the graph.graph_from_xml function.

    Parameters :
  • data ( networkx.MultiDiGraph ) – the input graph

  • filepath ( string or pathlib.Path ) – do not use, deprecated

  • node_tags ( list ) – do not use, deprecated

  • node_attrs ( list ) – do not use, deprecated

  • edge_tags ( list ) – do not use, deprecated

  • edge_attrs ( list ) – do not use, deprecated

  • oneway ( bool ) – do not use, deprecated

  • merge_edges ( bool ) – do not use, deprecated

  • edge_tag_aggs ( tuple ) – do not use, deprecated

  • api_version ( float ) – do not use, deprecated

  • precision ( int ) – do not use, deprecated

  • way_tag_aggs ( dict ) – Keys are OSM way tag keys and values are aggregation functions (anything accepted as an argument by pandas.agg). Allows user to aggregate graph edge attribute values into single OSM way values. If None, or if some tag’s key does not exist in the dict, the way attribute will be assigned the value of the first edge of the way.

  • Return type :
    osmnx.io. save_graphml ( G , filepath = None , gephi = False , encoding = 'utf-8' )

    Save graph to disk as GraphML file.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • filepath ( string or pathlib.Path ) – path to the GraphML file including extension. if None, use default data folder + graph.graphml

  • gephi ( bool ) – if True, give each edge a unique key/id to work around Gephi’s interpretation of the GraphML specification

  • encoding ( string ) – the character encoding for the saved file

  • Return type :

    osmnx.plot module

    Visualize street networks, routes, orientations, and geospatial features.

    osmnx.plot. get_colors ( n , cmap = 'viridis' , start = 0.0 , stop = 1.0 , alpha = 1.0 , return_hex = None )

    Get n evenly-spaced colors from a matplotlib colormap.

    Parameters :
  • n ( int ) – number of colors

  • cmap ( string ) – name of a matplotlib colormap

  • start ( float ) – where to start in the colorspace

  • stop ( float ) – where to end in the colorspace

  • alpha ( float ) – If None , return colors as HTML-like hex triplet “#rrggbb” RGB strings. If float , return as “#rrggbbaa” RGBa strings.

  • return_hex ( bool ) – deprecated, do not use

  • Returns :

    color_list

    Return type :
    osmnx.plot. get_edge_colors_by_attr ( G , attr , num_bins = None , cmap = 'viridis' , start = 0 , stop = 1 , na_color = 'none' , equal_size = False )

    Get colors based on edge attribute values.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • attr ( string ) – name of a numerical edge attribute

  • num_bins ( int ) – if None, linearly map a color to each value. otherwise, assign values to this many bins then assign a color to each bin.

  • cmap ( string ) – name of a matplotlib colormap

  • start ( float ) – where to start in the colorspace

  • stop ( float ) – where to end in the colorspace

  • na_color ( string ) – what color to assign edges with missing attr values

  • equal_size ( bool ) – ignored if num_bins is None. if True, bin into equal-sized quantiles (requires unique bin edges). if False, bin into equal-spaced bins.

  • Returns :

    edge_colors – series labels are edge IDs (u, v, key) and values are colors

    Return type :

    pandas.Series

    osmnx.plot. get_node_colors_by_attr ( G , attr , num_bins = None , cmap = 'viridis' , start = 0 , stop = 1 , na_color = 'none' , equal_size = False )

    Get colors based on node attribute values.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • attr ( string ) – name of a numerical node attribute

  • num_bins ( int ) – if None, linearly map a color to each value. otherwise, assign values to this many bins then assign a color to each bin.

  • cmap ( string ) – name of a matplotlib colormap

  • start ( float ) – where to start in the colorspace

  • stop ( float ) – where to end in the colorspace

  • na_color ( string ) – what color to assign nodes with missing attr values

  • equal_size ( bool ) – ignored if num_bins is None. if True, bin into equal-sized quantiles (requires unique bin edges). if False, bin into equal-spaced bins.

  • Returns :

    node_colors – series labels are node IDs and values are colors

    Return type :

    pandas.Series

    osmnx.plot. plot_figure_ground ( G = None , address = None , point = None , dist = 805 , network_type = 'drive_service' , street_widths = None , default_width = 4 , color = 'w' , edge_color = None , smooth_joints = None , ** pg_kwargs )

    Plot a figure-ground diagram of a street network.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph, must be unprojected

  • address ( string ) – deprecated, do not use

  • point ( tuple ) – deprecated, do not use

  • dist ( numeric ) – how many meters to extend north, south, east, west from center point

  • network_type ( string ) – deprecated, do not use

  • street_widths ( dict ) – dict keys are street types and values are widths to plot in pixels

  • default_width ( numeric ) – fallback width in pixels for any street type not in street_widths

  • color ( string ) – color of the streets

  • edge_color ( string ) – deprecated, do not use

  • smooth_joints ( bool ) – deprecated, do not use

  • pg_kwargs – keyword arguments to pass to plot_graph

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.plot. plot_footprints ( gdf , ax = None , figsize = (8, 8) , color = 'orange' , edge_color = 'none' , edge_linewidth = 0 , alpha = None , bgcolor = '#111111' , bbox = None , save = False , show = True , close = False , filepath = None , dpi = 600 )

    Visualize a GeoDataFrame of geospatial features’ footprints.

    Parameters :
  • gdf ( geopandas.GeoDataFrame ) – GeoDataFrame of footprints (shapely Polygons and MultiPolygons)

  • ax ( axis ) – if not None, plot on this preexisting axis

  • figsize ( tuple ) – if ax is None, create new figure with size (width, height)

  • color ( string ) – color of the footprints

  • edge_color ( string ) – color of the edge of the footprints

  • edge_linewidth ( float ) – width of the edge of the footprints

  • alpha ( float ) – opacity of the footprints

  • bgcolor ( string ) – background color of the plot

  • bbox ( tuple ) – bounding box as (north, south, east, west). if None, will calculate from the spatial extents of the geometries in gdf

  • save ( bool ) – if True, save the figure to disk at filepath

  • show ( bool ) – if True, call pyplot.show() to show the figure

  • close ( bool ) – if True, call pyplot.close() to close the figure

  • filepath ( string ) – if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png

  • dpi ( int ) – if save is True, the resolution of saved file

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.plot. plot_graph ( G , ax = None , figsize = (8, 8) , bgcolor = '#111111' , node_color = 'w' , node_size = 15 , node_alpha = None , node_edgecolor = 'none' , node_zorder = 1 , edge_color = '#999999' , edge_linewidth = 1 , edge_alpha = None , show = True , close = False , save = False , filepath = None , dpi = 300 , bbox = None )

    Visualize a graph.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • ax ( matplotlib axis ) – if not None, plot on this preexisting axis

  • figsize ( tuple ) – if ax is None, create new figure with size (width, height)

  • bgcolor ( string ) – background color of plot

  • node_color ( string or list ) – color(s) of the nodes

  • node_size ( int ) – size of the nodes: if 0, then skip plotting the nodes

  • node_alpha ( float ) – opacity of the nodes, note: if you passed RGBA values to node_color, set node_alpha=None to use the alpha channel in node_color

  • node_edgecolor ( string ) – color of the nodes’ markers’ borders

  • node_zorder ( int ) – zorder to plot nodes: edges are always 1, so set node_zorder=0 to plot nodes below edges

  • edge_color ( string or list ) – color(s) of the edges’ lines

  • edge_linewidth ( float ) – width of the edges’ lines: if 0, then skip plotting the edges

  • edge_alpha ( float ) – opacity of the edges, note: if you passed RGBA values to edge_color, set edge_alpha=None to use the alpha channel in edge_color

  • show ( bool ) – if True, call pyplot.show() to show the figure

  • close ( bool ) – if True, call pyplot.close() to close the figure

  • save ( bool ) – if True, save the figure to disk at filepath

  • filepath ( string ) – if save is True, the path to the file. file format determined from extension. if None, use settings.imgs_folder/image.png

  • dpi ( int ) – if save is True, the resolution of saved file

  • bbox ( tuple ) – bounding box as (north, south, east, west). if None, will calculate from spatial extents of plotted geometries.

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.plot. plot_graph_route ( G , route , route_color = 'r' , route_linewidth = 4 , route_alpha = 0.5 , orig_dest_size = 100 , ax = None , ** pg_kwargs )

    Visualize a route along a graph.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • route ( list ) – route as a list of node IDs

  • route_color ( string ) – color of the route

  • route_linewidth ( int ) – width of the route line

  • route_alpha ( float ) – opacity of the route line

  • orig_dest_size ( int ) – size of the origin and destination nodes

  • ax ( matplotlib axis ) – if not None, plot route on this preexisting axis instead of creating a new fig, ax and drawing the underlying graph

  • pg_kwargs – keyword arguments to pass to plot_graph

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.plot. plot_graph_routes ( G , routes , route_colors = 'r' , route_linewidths = 4 , ** pgr_kwargs )

    Visualize several routes along a graph.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • routes ( list ) – routes as a list of lists of node IDs

  • route_colors ( string or list ) – if string, 1 color for all routes. if list, the colors for each route.

  • route_linewidths ( int or list ) – if int, 1 linewidth for all routes. if list, the linewidth for each route.

  • pgr_kwargs – keyword arguments to pass to plot_graph_route

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.plot. plot_orientation ( Gu , num_bins = 36 , min_length = 0 , weight = None , ax = None , figsize = (5, 5) , area = True , color = '#003366' , edgecolor = 'k' , linewidth = 0.5 , alpha = 0.7 , title = None , title_y = 1.05 , title_font = None , xtick_font = None )

    Plot a polar histogram of a spatial network’s bidirectional edge bearings.

    Ignores self-loop edges as their bearings are undefined.

    For more info see: Boeing, G. 2019. “Urban Spatial Order: Street Network Orientation, Configuration, and Entropy.” Applied Network Science, 4 (1), 67. https://doi.org/10.1007/s41109-019-0189-1

    Parameters :
  • Gu ( networkx.MultiGraph ) – undirected, unprojected graph with bearing attributes on each edge

  • num_bins ( int ) – number of bins; for example, if num_bins=36 is provided, then each bin will represent 10 degrees around the compass

  • min_length ( float ) – ignore edges with length attributes less than min_length

  • weight ( string ) – if not None, weight edges’ bearings by this (non-null) edge attribute

  • ax ( matplotlib.axes.PolarAxesSubplot ) – if not None, plot on this preexisting axis; must have projection=polar

  • figsize ( tuple ) – if ax is None, create new figure with size (width, height)

  • area ( bool ) – if True, set bar length so area is proportional to frequency, otherwise set bar length so height is proportional to frequency

  • color ( string ) – color of histogram bars

  • edgecolor ( string ) – color of histogram bar edges

  • linewidth ( float ) – width of histogram bar edges

  • alpha ( float ) – opacity of histogram bars

  • title ( string ) – title for plot

  • title_y ( float ) – y position to place title

  • title_font ( dict ) – the title’s fontdict to pass to matplotlib

  • xtick_font ( dict ) – the xtick labels’ fontdict to pass to matplotlib

  • Returns :

    fig, ax – matplotlib figure, axis

    Return type :

    tuple

    osmnx.projection. is_projected ( crs )

    Determine if a coordinate reference system is projected or not.

    Parameters :

    crs ( string or pyproj.CRS ) – the identifier of the coordinate reference system, which can be anything accepted by pyproj.CRS.from_user_input() such as an authority string or a WKT string

    Returns :

    projected – True if crs is projected, otherwise False

    Return type :
    osmnx.projection. project_gdf ( gdf , to_crs = None , to_latlong = False )

    Project a GeoDataFrame from its current CRS to another.

    If to_latlong is True , this projects the GeoDataFrame to the CRS defined by settings.default_crs , otherwise it projects it to the CRS defined by to_crs . If to_crs is None , it projects it to the CRS of an appropriate UTM zone given gdf ’s bounds.

    Parameters :
  • gdf ( geopandas.GeoDataFrame ) – the GeoDataFrame to be projected

  • to_crs ( string or pyproj.CRS ) – if None, project to an appropriate UTM zone, otherwise project to this CRS

  • to_latlong ( bool ) – if True, project to settings.default_crs and ignore to_crs

  • Returns :

    gdf_proj – the projected GeoDataFrame

    Return type :

    geopandas.GeoDataFrame

    osmnx.projection. project_geometry ( geometry , crs = None , to_crs = None , to_latlong = False )

    Project a Shapely geometry from its current CRS to another.

    If to_latlong is True , this projects the GeoDataFrame to the CRS defined by settings.default_crs , otherwise it projects it to the CRS defined by to_crs . If to_crs is None , it projects it to the CRS of an appropriate UTM zone given geometry ’s bounds.

    Parameters :
  • geometry ( shapely geometry ) – the geometry to be projected

  • crs ( string or pyproj.CRS ) – the initial CRS of geometry . if None, it will be set to settings.default_crs

  • to_crs ( string or pyproj.CRS ) – if None, project to an appropriate UTM zone, otherwise project to this CRS

  • to_latlong ( bool ) – if True, project to settings.default_crs and ignore to_crs

  • Returns :

    geometry_proj, crs – the projected geometry and its new CRS

    Return type :

    tuple

    osmnx.projection. project_graph ( G , to_crs = None , to_latlong = False )

    Project a graph from its current CRS to another.

    If to_latlong is True , this projects the GeoDataFrame to the CRS defined by settings.default_crs , otherwise it projects it to the CRS defined by to_crs . If to_crs is None , it projects it to the CRS of an appropriate UTM zone given G ’s bounds.

    Parameters :
  • G ( networkx.MultiDiGraph ) – the graph to be projected

  • to_crs ( string or pyproj.CRS ) – if None, project to an appropriate UTM zone, otherwise project to this CRS

  • to_latlong ( bool ) – if True, project to settings.default_crs and ignore to_crs

  • Returns :

    G_proj – the projected graph

    Return type :

    networkx.MultiDiGraph

    osmnx.routing. add_edge_speeds ( G , hwy_speeds = None , fallback = None , precision = None , agg = numpy.mean )

    Add edge speeds (km per hour) to graph as new speed_kph edge attributes.

    By default, this imputes free-flow travel speeds for all edges via the mean maxspeed value of the edges of each highway type. For highway types in the graph that have no maxspeed value on any edge, it assigns the mean of all maxspeed values in graph.

    This default mean-imputation can obviously be imprecise, and the user can override it by passing in hwy_speeds and/or fallback arguments that correspond to local speed limit standards. The user can also specify a different aggregation function (such as the median) to impute missing values from the observed values.

    If edge maxspeed attribute has “mph” in it, value will automatically be converted from miles per hour to km per hour. Any other speed units should be manually converted to km per hour prior to running this function, otherwise there could be unexpected results. If “mph” does not appear in the edge’s maxspeed attribute string, then function assumes kph, per OSM guidelines: https://wiki.openstreetmap.org/wiki/Map_Features/Units

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • hwy_speeds ( dict ) – dict keys = OSM highway types and values = typical speeds (km per hour) to assign to edges of that highway type for any edges missing speed data. Any edges with highway type not in hwy_speeds will be assigned the mean preexisting speed value of all edges of that highway type.

  • fallback ( numeric ) – default speed value (km per hour) to assign to edges whose highway type did not appear in hwy_speeds and had no preexisting speed values on any edge

  • precision ( int ) – deprecated, do not use

  • agg ( function ) – aggregation function to impute missing values from observed values. the default is numpy.mean, but you might also consider for example numpy.median, numpy.nanmedian, or your own custom function

  • Returns :

    G – graph with speed_kph attributes on all edges

    Return type :

    networkx.MultiDiGraph

    osmnx.routing. add_edge_travel_times ( G , precision = None )

    Add edge travel time (seconds) to graph as new travel_time edge attributes.

    Calculates free-flow travel time along each edge, based on length and speed_kph attributes. Note: run add_edge_speeds first to generate the speed_kph attribute. All edges must have length and speed_kph attributes and all their values must be non-null.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • precision ( int ) – deprecated, do not use

  • Returns :

    G – graph with travel_time attributes on all edges

    Return type :

    networkx.MultiDiGraph

    osmnx.routing. k_shortest_paths ( G , orig , dest , k , weight = 'length' )

    Solve k shortest paths from an origin node to a destination node.

    Uses Yen’s algorithm. See also shortest_path to solve just the one shortest path.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • orig ( int ) – origin node ID

  • dest ( int ) – destination node ID

  • k ( int ) – number of shortest paths to solve

  • weight ( string ) – edge attribute to minimize when solving shortest paths. default is edge length in meters.

  • Yields :

    path ( list ) – a generator of k shortest paths ordered by total weight. each path is a list of node IDs.

    osmnx.routing. route_to_gdf ( G , route , weight = 'length' )

    Return a GeoDataFrame of the edges in a path, in order.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • route ( list ) – list of node IDs constituting the path

  • weight ( string ) – if there are parallel edges between two nodes, choose lowest weight

  • Returns :

    gdf_edges – GeoDataFrame of the edges

    Return type :

    geopandas.GeoDataFrame

    osmnx.routing. shortest_path ( G , orig , dest , weight = 'length' , cpus = 1 )

    Solve shortest path from origin node(s) to destination node(s).

    Uses Dijkstra’s algorithm. If orig and dest are single node IDs, this will return a list of the nodes constituting the shortest path between them. If orig and dest are lists of node IDs, this will return a list of lists of the nodes constituting the shortest path between each origin-destination pair. If a path cannot be solved, this will return None for that path. You can parallelize solving multiple paths with the cpus parameter, but be careful to not exceed your available RAM.

    See also k_shortest_paths to solve multiple shortest paths between a single origin and destination. For additional functionality or different solver algorithms, use NetworkX directly.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • orig ( int or list ) – origin node ID, or a list of origin node IDs

  • dest ( int or list ) – destination node ID, or a list of destination node IDs

  • weight ( string ) – edge attribute to minimize when solving shortest path

  • cpus ( int ) – how many CPU cores to use; if None, use all available

  • Returns :

    path – list of node IDs constituting the shortest path, or, if orig and dest are lists, then a list of path lists

    Return type :

    Global settings that can be configured by the user.

    all_oneway bool

    Only use if specifically saving to .osm XML file with the save_graph_xml function. If True, forces all ways to be loaded as oneway ways, preserving the original order of nodes stored in the OSM way XML. This also retains original OSM string values for oneway attribute values, rather than converting them to a True/False bool. Default is False .

    bidirectional_network_types list

    Network types for which a fully bidirectional graph will be created. Default is [“walk”] .

    cache_folder str or pathlib.Path

    Path to folder in which to save/load HTTP response cache, if the use_cache setting equals True . Default is “./cache” .

    cache_only_mode bool

    If True, download network data from Overpass then raise a CacheOnlyModeInterrupt error for user to catch. This prevents graph building from taking place and instead just saves OSM response data to cache. Useful for sequentially caching lots of raw data (as you can only query Overpass one request at a time) then using the local cache to quickly build many graphs simultaneously with multiprocessing. Default is False .

    data_folder str or pathlib.Path

    Path to folder in which to save/load graph files by default. Default is “./data” .

    default_accept_language str

    Do not use, deprecated. Use http_accept_language instead.

    default_access str

    Default filter for OSM “access” key. Default is ‘[“access”!~”private”]’ . Note that also filtering out “access=no” ways prevents including transit-only bridges (e.g., Tilikum Crossing) from appearing in drivable road network (e.g., ‘[“access”!~”private|no”]’ ). However, some drivable tollroads have “access=no” plus a “access:conditional” key to clarify when it is accessible, so we can’t filter out all “access=no” ways by default. Best to be permissive here then remove complicated combinations of tags programatically after the full graph is downloaded and constructed.

    default_crs str

    Default coordinate reference system to set when creating graphs. Default is “epsg:4326” .

    default_referer str

    Do not use, deprecated. Use http_referer instead.

    default_user_agent str

    Do not use, deprecated. Use http_user_agent instead.

    doh_url_template str

    Endpoint to resolve DNS-over-HTTPS if local DNS resolution fails. Set to None to disable DoH, but see downloader._config_dns documentation for caveats. Default is: “https://8.8.8.8/resolve?name={hostname}”

    elevation_url_template str

    Endpoint of the Google Maps Elevation API (or equivalent), containing exactly two parameters: locations and key . Default is: “https://maps.googleapis.com/maps/api/elevation/json?locations={locations}&key={key}” One example of an alternative equivalent would be Open Topo Data: “https://api.opentopodata.org/v1/aster30m?locations={locations}&key={key}”

    http_accept_language str

    HTTP header accept-language. Default is “en” . Note that Nominatim’s default language is “en” and it can sort result importance scores differently if a different language is specified.

    http_referer str

    HTTP header referer. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)” .

    http_user_agent str

    HTTP header user-agent. Default is “OSMnx Python package (https://github.com/gboeing/osmnx)” .

    imgs_folder str or pathlib.Path

    Path to folder in which to save plotted images by default. Default is “./images” .

    log_file bool

    If True, save log output to a file in logs_folder. Default is False .

    log_filename str

    Name of the log file, without file extension. Default is “osmnx” .

    log_console bool

    If True, print log output to the console (terminal window). Default is False .

    log_level int

    One of Python’s logger.level constants. Default is logging.INFO .

    log_name str

    Name of the logger. Default is “OSMnx” .

    logs_folder str or pathlib.Path

    Path to folder in which to save log files. Default is “./logs” .

    max_query_area_size int

    Maximum area for any part of the geometry in meters: any polygon bigger than this will get divided up for multiple queries to the API. Default is 2500000000 .

    memory int

    Do not use, deprecated. Use overpass_memory instead.

    nominatim_endpoint str

    Do not use, deprecated. Use nominatim_url instead.

    nominatim_key str

    Your Nominatim API key, if you are using an API instance that requires one. Default is None .

    nominatim_url str

    The base API url to use for Nominatim queries. Default is “https://nominatim.openstreetmap.org/” .

    osm_xml_node_attrs list

    Do not use, deprecated.

    osm_xml_node_tags list

    Do not use, deprecated.

    osm_xml_way_attrs list

    Do not use, deprecated.

    osm_xml_way_tags list

    Do not use, deprecated.

    overpass_endpoint str

    Do not use, deprecated. Use overpass_url instead.

    overpass_memory int | None

    Overpass server memory allocation size for the query, in bytes. If None, server will choose its default allocation size. Use with caution. Default is None .

    overpass_rate_limit bool

    If True, check the Overpass server status endpoint for how long to pause before making request. Necessary if server uses slot management, but can be set to False if you are running your own overpass instance without rate limiting. Default is True .

    overpass_settings str

    Settings string for Overpass queries. Default is “[out:json][timeout:{timeout}]{maxsize}” . By default, the {timeout} and {maxsize} values are set dynamically by OSMnx when used. To query, for example, historical OSM data as of a certain date: ‘[out:json][timeout:90][date:”2019-10-28T19:20:00Z”]’ . Use with caution.

    overpass_url str

    The base API url to use for Overpass queries. Default is “https://overpass-api.de/api” .

    requests_kwargs dict

    Optional keyword args to pass to the requests package when connecting to APIs, for example to configure authentication or provide a path to a local certificate file. More info on options such as auth, cert, verify, and proxies can be found in the requests package advanced docs. Default is {} .

    requests_timeout int

    The timeout interval in seconds for HTTP requests, and (when applicable) for Overpass server to use for executing the query. Default is 180 .

    timeout int

    Do not use, deprecated. Use requests_timeout instead.

    use_cache bool

    If True, cache HTTP responses locally instead of calling API repeatedly for the same request. Default is True .

    useful_tags_node list

    OSM “node” tags to add as graph node attributes, when present in the data retrieved from OSM. Default is [“ref”, “highway”] .

    useful_tags_way list

    OSM “way” tags to add as graph edge attributes, when present in the data retrieved from OSM. Default is [“bridge”, “tunnel”, “oneway”, “lanes”, “ref”, “name”, “highway”, “maxspeed”, “service”, “access”, “area”, “landuse”, “width”, “est_width”, “junction”] .

    osmnx.simplification. consolidate_intersections ( G , tolerance = 10 , rebuild_graph = True , dead_ends = False , reconnect_edges = True )

    Consolidate intersections comprising clusters of nearby nodes.

    Merges nearby nodes and returns either their centroids or a rebuilt graph with consolidated intersections and reconnected edge geometries. The tolerance argument should be adjusted to approximately match street design standards in the specific street network, and you should always use a projected graph to work in meaningful and consistent units like meters. Note the tolerance represents a per-node buffering radius: for example, to consolidate nodes within 10 meters of each other, use tolerance=5.

    When rebuild_graph=False, it uses a purely geometrical (and relatively fast) algorithm to identify “geometrically close” nodes, merge them, and return just the merged intersections’ centroids. When rebuild_graph=True, it uses a topological (and slower but more accurate) algorithm to identify “topologically close” nodes, merge them, then rebuild/return the graph. Returned graph’s node IDs represent clusters rather than osmids. Refer to nodes’ osmid_original attributes for original osmids. If multiple nodes were merged together, the osmid_original attribute is a list of merged nodes’ osmids.

    Divided roads are often represented by separate centerline edges. The intersection of two divided roads thus creates 4 nodes, representing where each edge intersects a perpendicular edge. These 4 nodes represent a single intersection in the real world. A similar situation occurs with roundabouts and traffic circles. This function consolidates nearby nodes by buffering them to an arbitrary distance, merging overlapping buffers, and taking their centroid.

    Parameters :
  • G ( networkx.MultiDiGraph ) – a projected graph

  • tolerance ( float ) – nodes are buffered to this distance (in graph’s geometry’s units) and subsequent overlaps are dissolved into a single node

  • rebuild_graph ( bool ) – if True, consolidate the nodes topologically, rebuild the graph, and return as networkx.MultiDiGraph. if False, consolidate the nodes geometrically and return the consolidated node points as geopandas.GeoSeries

  • dead_ends ( bool ) – if False, discard dead-end nodes to return only street-intersection points

  • reconnect_edges ( bool ) – ignored if rebuild_graph is not True. if True, reconnect edges and their geometries in rebuilt graph to the consolidated nodes and update edge length attributes; if False, returned graph has no edges (which is faster if you just need topologically consolidated intersection counts).

  • Returns :

    if rebuild_graph=True, returns MultiDiGraph with consolidated intersections and reconnected edge geometries. if rebuild_graph=False, returns GeoSeries of shapely Points representing the centroids of street intersections

    Return type :

    networkx.MultiDiGraph or geopandas.GeoSeries

    osmnx.simplification. simplify_graph ( G , strict = None , edge_attrs_differ = None , endpoint_attrs = None , remove_rings = True , track_merged = False )

    Simplify a graph’s topology by removing interstitial nodes.

    This simplifies graph topology by removing all nodes that are not intersections or dead-ends, by creating an edge directly between the end points that encapsulate them while retaining the full geometry of the original edges, saved as a new geometry attribute on the new edge.

    Note that only simplified edges receive a geometry attribute. Some of the resulting consolidated edges may comprise multiple OSM ways, and if so, their multiple attribute values are stored as a list. Optionally, the simplified edges can receive a merged_edges attribute that contains a list of all the (u, v) node pairs that were merged together.

    Use the edge_attrs_differ parameter to relax simplification strictness. For example, edge_attrs_differ=[‘osmid’] will retain every node whose incident edges have different OSM IDs. This lets you keep nodes at elbow two-way intersections (but be aware that sometimes individual blocks have multiple OSM IDs within them too). You could also use this parameter to retain nodes where sidewalks or bike lanes begin/end in the middle of a block.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • strict ( bool ) – deprecated, do not use

  • edge_attrs_differ ( iterable ) – An iterable of edge attribute names for relaxing the strictness of endpoint determination. If not None, a node is an endpoint if its incident edges have different values then each other for any of the edge attributes in edge_attrs_differ .

  • endpoint_attrs ( iterable ) – deprecated, do not use

  • remove_rings ( bool ) – if True, remove isolated self-contained rings that have no endpoints

  • track_merged ( bool ) – if True, add merged_edges attribute on simplified edges, containing a list of all the (u, v) node pairs that were merged together

  • Returns :

    G – topologically simplified graph, with a new geometry attribute on each simplified edge

    Return type :

    networkx.MultiDiGraph

    osmnx.speed. add_edge_speeds ( G , hwy_speeds = None , fallback = None , precision = None , agg = numpy.mean )

    Do not use: deprecated.

    Use the routing.add_edge_speeds function instead.

    Parameters :
  • G ( networkx.MultiDiGraph ) – deprecated, do not use

  • hwy_speeds ( dict ) – deprecated, do not use

  • fallback ( numeric ) – deprecated, do not use

  • precision ( int ) – deprecated, do not use

  • agg ( function ) – deprecated, do not use

  • Returns :
    Return type :

    networkx.MultiDiGraph

    osmnx.speed. add_edge_travel_times ( G , precision = None )

    Do not use: deprecated.

    Use the routing.add_edge_travel_times function instead.

    Parameters :
  • G ( networkx.MultiDiGraph ) – deprecated, do not use

  • precision ( int ) – deprecated, do not use

  • Returns :
    Return type :

    networkx.MultiDiGraph

    osmnx.stats module

    Calculate geometric and topological network measures.

    This module defines streets as the edges in an undirected representation of the graph. Using undirected graph edges prevents double-counting bidirectional edges of a two-way street, but may double-count a divided road’s separate centerlines with different end point nodes. If clean_periphery=True when the graph was created (which is the default parameterization), then you will get accurate node degrees (and in turn streets-per-node counts) even at the periphery of the graph.

    You can use NetworkX directly for additional topological network measures.

    osmnx.stats. basic_stats ( G , area = None , clean_int_tol = None )

    Calculate basic descriptive geometric and topological measures of a graph.

    Density measures are only calculated if area is provided and clean intersection measures are only calculated if clean_int_tol is provided.

    Parameters :
  • G ( networkx.MultiDiGraph ) – input graph

  • area ( float ) – if not None, calculate density measures and use this value (in square meters) as the denominator

  • clean_int_tol ( float ) – if not None, calculate consolidated intersections count (and density, if area is also provided) and use this tolerance value; refer to the simplification.consolidate_intersections function documentation for details

  • Returns :

    stats

    dictionary containing the following keys
    • circuity_avg - see circuity_avg function documentation

    • clean_intersection_count - see clean_intersection_count function documentation

    • clean_intersection_density_km - clean_intersection_count per sq km

    • edge_density_km - edge_length_total per sq km

    • edge_length_avg - edge_length_total / m

    • edge_length_total - see edge_length_total function documentation

    • intersection_count - see intersection_count function documentation

    • intersection_density_km - intersection_count per sq km

    • k_avg - graph’s average node degree (in-degree and out-degree)

    • m - count of edges in graph

    • n - count of nodes in graph

    • node_density_km - n per sq km

    • self_loop_proportion - see self_loop_proportion function documentation

    • street_density_km - street_length_total per sq km

    • street_length_avg - street_length_total / street_segment_count

    • street_length_total - see street_length_total function documentation

    • street_segment_count - see street_segment_count function documentation

    • streets_per_node_avg - see streets_per_node_avg function documentation

    • streets_per_node_counts - see streets_per_node_counts function documentation

    • streets_per_node_proportions - see streets_per_node_proportions function documentation

    • osmnx.stats. circuity_avg ( Gu )

      Calculate average street circuity using edges of undirected graph.

      Circuity is the sum of edge lengths divided by the sum of straight-line distances between edge endpoints. Calculates straight-line distance as euclidean distance if projected or great-circle distance if unprojected.

      Parameters :

      Gu ( networkx.MultiGraph ) – undirected input graph

      Returns :

      circuity_avg – the graph’s average undirected edge circuity

      Return type :

      float

      osmnx.stats. count_streets_per_node ( G , nodes = None )

      Count how many physical street segments connect to each node in a graph.

      This function uses an undirected representation of the graph and special handling of self-loops to accurately count physical streets rather than directed edges. Note: this function is automatically run by all the graph.graph_from_x functions prior to truncating the graph to the requested boundaries, to add accurate street_count attributes to each node even if some of its neighbors are outside the requested graph boundaries.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • nodes ( list ) – which node IDs to get counts for. if None, use all graph nodes, otherwise calculate counts only for these node IDs

    • Returns :

      streets_per_node – counts of how many physical streets connect to each node, with keys = node ids and values = counts

      Return type :
      osmnx.stats. intersection_count ( G = None , min_streets = 2 )

      Count the intersections in a graph.

      Intersections are defined as nodes with at least min_streets number of streets incident on them.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • min_streets ( int ) – a node must have at least min_streets incident on them to count as an intersection

    • Returns :

      count – count of intersections in graph

      Return type :
      osmnx.stats. self_loop_proportion ( Gu )

      Calculate percent of edges that are self-loops in a graph.

      A self-loop is defined as an edge from node u to node v where u==v .

      Parameters :

      Gu ( networkx.MultiGraph ) – undirected input graph

      Returns :

      proportion – proportion of graph edges that are self-loops

      Return type :

      float

      osmnx.stats. streets_per_node ( G )

      Count streets (undirected edges) incident on each node.

      Parameters :

      G ( networkx.MultiDiGraph ) – input graph

      Returns :

      spn – dictionary with node ID keys and street count values

      Return type :
      osmnx.stats. streets_per_node_avg ( G )

      Calculate graph’s average count of streets per node.

      Parameters :

      G ( networkx.MultiDiGraph ) – input graph

      Returns :

      spna – average count of streets per node

      Return type :

      float

      Returns :

      spnc – dictionary keyed by count of streets incident on each node, and with values of how many nodes in the graph have this count

      Return type :
      Returns :

      spnp – dictionary keyed by count of streets incident on each node, and with values of what proportion of nodes in the graph have this count

      Return type :
      osmnx.truncate. largest_component ( G , strongly = False )

      Get subgraph of G’s largest weakly/strongly connected component.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • strongly ( bool ) – if True, return the largest strongly instead of weakly connected component

    • Returns :

      G – the largest connected component subgraph of the original graph

      Return type :

      networkx.MultiDiGraph

      osmnx.truncate. truncate_graph_bbox ( G , north = None , south = None , east = None , west = None , bbox = None , truncate_by_edge = False , retain_all = False , quadrat_width = None , min_num = None )

      Remove every node in graph that falls outside a bounding box.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • north ( float ) – deprecated, do not use

    • south ( float ) – deprecated, do not use

    • east ( float ) – deprecated, do not use

    • west ( float ) – deprecated, do not use

    • bbox ( tuple of floats ) – bounding box as (north, south, east, west)

    • truncate_by_edge ( bool ) – if True, retain nodes outside bounding box if at least one of node’s neighbors is within the bounding box

    • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

    • quadrat_width ( float ) – deprecated, do not use

    • min_num ( int ) – deprecated, do not use

    • Returns :

      G – the truncated graph

      Return type :

      networkx.MultiDiGraph

      osmnx.truncate. truncate_graph_dist ( G , source_node , max_dist = 1000 , weight = 'length' , retain_all = False )

      Remove every node farther than some network distance from source_node.

      This function can be slow for large graphs, as it must calculate shortest path distances between source_node and every other graph node.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • source_node ( int ) – node in graph from which to measure network distances to other nodes

    • max_dist ( float ) – remove every node in the graph that is greater than this distance (in same units as weight attribute) along the network from source_node

    • weight ( string ) – graph edge attribute to use to measure distance

    • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

    • Returns :

      G – the truncated graph

      Return type :

      networkx.MultiDiGraph

      osmnx.truncate. truncate_graph_polygon ( G , polygon , retain_all = False , truncate_by_edge = False , quadrat_width = None , min_num = None )

      Remove every node in graph that falls outside a (Multi)Polygon.

      Parameters :
    • G ( networkx.MultiDiGraph ) – input graph

    • polygon ( shapely.geometry.Polygon or shapely.geometry.MultiPolygon ) – only retain nodes in graph that lie within this geometry

    • retain_all ( bool ) – if True, return the entire graph even if it is not connected. otherwise, retain only the largest weakly connected component.

    • truncate_by_edge ( bool ) – if True, retain nodes outside boundary polygon if at least one of node’s neighbors is within the polygon

    • quadrat_width ( float ) – deprecated, do not use

    • min_num ( int ) – deprecated, do not use

    • Returns :

      G – the truncated graph

      Return type :

      networkx.MultiDiGraph

      osmnx.utils. citation ( style = 'bibtex' )

      Print the OSMnx package’s citation information.

      Boeing, G. (2024). Modeling and Analyzing Urban Networks and Amenities with OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/

      Parameters :

      style ( string {"apa" , "bibtex" , "ieee"} ) – citation format, either APA or BibTeX or IEEE

      Return type :
      osmnx.utils. config ( all_oneway = False , bidirectional_network_types = ['walk'] , cache_folder = './cache' , cache_only_mode = False , data_folder = './data' , default_accept_language = None , default_access = '["access"!~"private"]' , default_crs = 'epsg:4326' , default_referer = None , default_user_agent = None , imgs_folder = './images' , log_console = False , log_file = False , log_filename = 'osmnx' , log_level = 20 , log_name = 'OSMnx' , logs_folder = './logs' , max_query_area_size = 2500000000 , memory = None , nominatim_endpoint = None , nominatim_key = None , osm_xml_node_attrs = None , osm_xml_node_tags = None , osm_xml_way_attrs = None , osm_xml_way_tags = None , overpass_endpoint = None , overpass_rate_limit = True , overpass_settings = '[out:json][timeout:{timeout}]{maxsize}' , requests_kwargs = {} , timeout = None , use_cache = True , useful_tags_node = ['ref', 'highway'] , useful_tags_way = ['bridge', 'tunnel', 'oneway', 'lanes', 'ref', 'name', 'highway', 'maxspeed', 'service', 'access', 'area', 'landuse', 'width', 'est_width', 'junction'] )

      Do not use: deprecated. Use the settings module directly.

      Parameters :
    • all_oneway ( bool ) – deprecated

    • bidirectional_network_types ( list ) – deprecated

    • cache_folder ( string or pathlib.Path ) – deprecated

    • data_folder ( string or pathlib.Path ) – deprecated

    • cache_only_mode ( bool ) – deprecated

    • default_accept_language ( string ) – deprecated

    • default_access ( string ) – deprecated

    • default_crs ( string ) – deprecated

    • default_referer ( string ) – deprecated

    • default_user_agent ( string ) – deprecated

    • imgs_folder ( string or pathlib.Path ) – deprecated

    • log_file ( bool ) – deprecated

    • log_filename ( string ) – deprecated

    • log_console ( bool ) – deprecated

    • log_level ( int ) – deprecated

    • log_name ( string ) – deprecated

    • logs_folder ( string or pathlib.Path ) – deprecated

    • max_query_area_size ( int ) – deprecated

    • memory ( int ) – deprecated

    • nominatim_endpoint ( string ) – deprecated

    • nominatim_key ( string ) – deprecated

    • osm_xml_node_attrs ( list ) – deprecated

    • osm_xml_node_tags ( list ) – deprecated

    • osm_xml_way_attrs ( list ) – deprecated

    • osm_xml_way_tags ( list ) – deprecated

    • overpass_endpoint ( string ) – deprecated

    • overpass_rate_limit ( bool ) – deprecated

    • overpass_settings ( string ) – deprecated

    • requests_kwargs ( dict ) – deprecated

    • timeout ( int ) – deprecated

    • use_cache ( bool ) – deprecated

    • useful_tags_node ( list ) – deprecated

    • useful_tags_way ( list ) – deprecated

    • Return type :
      osmnx.utils. log ( message , level = None , name = None , filename = None )

      Write a message to the logger.

      This logs to file and/or prints to the console (terminal), depending on the current configuration of settings.log_file and settings.log_console.

      Parameters :
    • message ( string ) – the message to log

    • level ( int ) – one of Python’s logger.level constants

    • name ( string ) – name of the logger

    • filename ( string ) – name of the log file, without file extension

    • Return type :
      osmnx.utils. ts ( style = 'datetime' , template = None )

      Return current local timestamp as a string.

      Parameters :
    • style ( string {"datetime" , "date" , "time"} ) – format the timestamp with this built-in style

    • template ( string ) – if not None, format the timestamp with this format string instead of one of the built-in styles

    • Returns :

      ts – local timestamp string

      Return type :

      string

      osmnx.utils_geo. bbox_from_point ( point , dist = 1000 , project_utm = False , return_crs = False )

      Create a bounding box around a (lat, lon) point.

      Create a bounding box some distance (in meters) in each direction (north, south, east, and west) from the center point and optionally project it.

      Parameters :
    • point ( tuple ) – the (lat, lon) center point to create the bounding box around

    • dist ( int ) – bounding box distance in meters from the center point

    • project_utm ( bool ) – if True, return bounding box as UTM-projected coordinates

    • return_crs ( bool ) – if True, and project_utm=True, return the projected CRS too

    • Returns :

      bbox or bbox, crs – (north, south, east, west) or ((north, south, east, west), crs)

      Return type :

      tuple or tuple, crs

      osmnx.utils_geo. bbox_to_poly ( north = None , south = None , east = None , west = None , bbox = None )

      Convert bounding box coordinates to shapely Polygon.

      Parameters :
    • north ( float ) – deprecated, do not use

    • south ( float ) – deprecated, do not use

    • east ( float ) – deprecated, do not use

    • west ( float ) – deprecated, do not use

    • bbox ( tuple of floats ) – bounding box as (north, south, east, west)

    • Return type :

      shapely.geometry.Polygon

      osmnx.utils_geo. interpolate_points ( geom , dist )

      Interpolate evenly spaced points along a LineString.

      The spacing is approximate because the LineString’s length may not be evenly divisible by it.

      Parameters :
    • geom ( shapely.geometry.LineString ) – a LineString geometry

    • dist ( float ) – spacing distance between interpolated points, in same units as geom . smaller values accordingly generate more points.

    • Yields :

      points ( generator ) – tuples of (x, y) floats of the interpolated points’ coordinates

      Parameters :
    • geom ( shapely.geometry.geometry {Point , MultiPoint , LineString , MultiLineString , Polygon , MultiPolygon} ) – deprecated, do not use

    • precision ( int ) – deprecated, do not use

    • Return type :

      shapely.geometry.geometry

      osmnx.utils_geo. sample_points ( G , n )

      Randomly sample points constrained to a spatial graph.

      This generates a graph-constrained uniform random sample of points. Unlike typical spatially uniform random sampling, this method accounts for the graph’s geometry. And unlike equal-length edge segmenting, this method guarantees uniform randomness.

      Parameters :
    • G ( networkx.MultiGraph ) – graph from which to sample points. should be undirected (to avoid oversampling bidirectional edges) and projected (for accurate point interpolation)

    • n ( int ) – how many points to sample

    • Returns :

      points – the sampled points, multi-indexed by (u, v, key) of the edge from which each point was drawn

      Return type :

      geopandas.GeoSeries

      osmnx.utils_graph. get_digraph ( G , weight = 'length' )

      Do not use: deprecated.

      Use the convert.to_digraph function instead.

      Parameters :
    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • weight ( string ) – deprecated, do not use

    • Return type :

      networkx.DiGraph

      osmnx.utils_graph. get_largest_component ( G , strongly = False )

      Do not use: deprecated.

      Use the truncate.largest_component function instead.

      Parameters :
    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • strongly ( bool ) – deprecated, do not use

    • Returns :
      Return type :

      networkx.MultiDiGraph

      osmnx.utils_graph. get_route_edge_attributes ( G , route , attribute = None , minimize_key = 'length' , retrieve_default = None )

      Do not use: deprecated.

      Use the routing.route_to_gdf function instead.

      Parameters :
    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • route ( list ) – deprecated, do not use

    • attribute ( string ) – deprecated, do not use

    • minimize_key ( string ) – deprecated, do not use

    • retrieve_default ( Callable [ Tuple [ Any , Any ] , Any ] ) – deprecated, do not use

    • Returns :

      attribute_values

      Return type :
      osmnx.utils_graph. get_undirected ( G )

      Do not use: deprecated.

      Use the convert.to_undirected function instead.

      Parameters :

      G ( networkx.MultiDiGraph ) – deprecated, do not use

      Return type :

      networkx.MultiGraph

      osmnx.utils_graph. graph_from_gdfs ( gdf_nodes , gdf_edges , graph_attrs = None )

      Do not use: deprecated.

      Use the convert.graph_from_gdfs function instead.

      Parameters :
    • gdf_nodes ( geopandas.GeoDataFrame ) – deprecated, do not use

    • gdf_edges ( geopandas.GeoDataFrame ) – deprecated, do not use

    • graph_attrs ( dict ) – deprecated, do not use

    • Returns :
      Return type :

      networkx.MultiDiGraph

      osmnx.utils_graph. graph_to_gdfs ( G , nodes = True , edges = True , node_geometry = True , fill_edge_geometry = True )

      Do not use: deprecated.

      Use the convert.graph_to_gdfs function instead.

      Parameters :
    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • nodes ( bool ) – deprecated, do not use

    • edges ( bool ) – deprecated, do not use

    • node_geometry ( bool ) – deprecated, do not use

    • fill_edge_geometry ( bool ) – deprecated, do not use

    • Return type :

      geopandas.GeoDataFrame or tuple

    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • warn ( bool ) – deprecated, do not use

    • Returns :
      Return type :

      networkx.MultiDiGraph

      osmnx.utils_graph. route_to_gdf ( G , route , weight = 'length' )

      Do not use: deprecated.

      Use the routing.route_to_gdf function instead.

      Parameters :
    • G ( networkx.MultiDiGraph ) – deprecated, do not use

    • route ( list ) – deprecated, do not use

    • weight ( string ) – deprecated, do not use

    • Returns :

      gdf_edges

      Return type :

      geopandas.GeoDataFrame