-
123412341234.dkr.ecr.us-west-2.amazonaws.com/my-custom-image:1.0
-
custom-image:latest
If
framework_version
or
py_version
are
None
, then
image_uri
is required. If also
None
, then a
ValueError
will be raised.
-
**kwargs
– Additional kwargs passed to the
Framework
constructor.
create_model
(
model_server_workers
=
None
,
role
=
None
,
vpc_config_override
=
'VPC_CONFIG_DEFAULT'
,
entry_point
=
None
,
source_dir
=
None
,
dependencies
=
None
,
**
kwargs
)
-
Create a SageMaker
ChainerModel
object that can be deployed to an
Endpoint
.
-
Parameters
-
model_server_workers
(
int
) – Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
-
role
(
str
) – The
ExecutionRoleArn
IAM Role ARN for the
Model
,
which is also used during transform jobs. If not specified, the
role from the Estimator will be used.
-
vpc_config_override
(
dict
[
str
,
list
[
str
]
]
) –
Optional override for VpcConfig set on
the model. Default: use subnets and security groups from this Estimator.
-
’Subnets’ (list[str]): List of subnet ids.
-
’SecurityGroupIds’ (list[str]): List of security group ids.
-
entry_point
(
str
) – Path (absolute or relative) to the local Python source file which
should be executed as the entry point to training. If
source_dir
is specified,
then
entry_point
must point to a file located at the root of
source_dir
.
If not specified, the training entry point is used.
-
source_dir
(
str
) – Path (absolute or relative) to a directory with any other serving
source code dependencies aside from the entry point file.
If not specified, the model source directory from training is used.
-
dependencies
(
list
[
str
]
) – A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container.
If not specified, the dependencies from training are used.
This is not supported with “local code” in Local Mode.
-
**kwargs
– Additional kwargs passed to the ChainerModel constructor.
-
Returns
-
A SageMaker
ChainerModel
object. See
ChainerModel()
for full details.
-
Return type
-
sagemaker.chainer.model.ChainerModel
class
sagemaker.chainer.model.
ChainerModel
(
model_data
,
role=None
,
entry_point=None
,
image_uri=None
,
framework_version=None
,
py_version=None
,
predictor_cls=<class
'sagemaker.chainer.model.ChainerPredictor'>
,
model_server_workers=None
,
**kwargs
)
-
Bases:
FrameworkModel
An Chainer SageMaker
Model
that can be deployed to a SageMaker
Endpoint
.
Initialize an ChainerModel.
-
Parameters
-
model_data
(
str
or
PipelineVariable
) – The S3 location of a SageMaker model data
.tar.gz
file.
-
role
(
str
) – An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if it needs to access an AWS resource.
-
entry_point
(
str
) – Path (absolute or relative) to the Python source
file which should be executed as the entry point to model
hosting. If
source_dir
is specified, then
entry_point
must point to a file located at the root of
source_dir
.
-
image_uri
(
str
or
PipelineVariable
) – A Docker image URI (default: None).
If not specified, a default image for Chainer will be used.
If
framework_version
or
py_version
are
None
, then
image_uri
is required. If
image_uri
is also
None
,
then a
ValueError
will be raised.
-
framework_version
(
str
) – Chainer version you want to use for
executing your model training code. Defaults to
None
. Required
unless
image_uri
is provided.
-
py_version
(
str
) – Python version you want to use for executing your
model training code. Defaults to
None
. Required unless
image_uri
is provided.
-
predictor_cls
(
callable
[
str
,
sagemaker.session.Session
]
) – A function
to call to create a predictor with an endpoint name and
SageMaker
Session
. If specified,
deploy()
returns the
result of invoking this function on the created endpoint name.
-
model_server_workers
(
int
or
PipelineVariable
) – Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
-
**kwargs
– Keyword arguments passed to the
FrameworkModel
initializer.
register
(
content_types
=
None
,
response_types
=
None
,
inference_instances
=
None
,
transform_instances
=
None
,
model_package_name
=
None
,
model_package_group_name
=
None
,
image_uri
=
None
,
model_metrics
=
None
,
metadata_properties
=
None
,
marketplace_cert
=
False
,
approval_status
=
None
,
description
=
None
,
drift_check_baselines
=
None
,
customer_metadata_properties
=
None
,
domain
=
None
,
sample_payload_url
=
None
,
task
=
None
,
framework
=
None
,
framework_version
=
None
,
nearest_model_name
=
None
,
data_input_configuration
=
None
,
skip_model_validation
=
None
,
source_uri
=
None
,
model_card
=
None
)
-
Creates a model package for creating SageMaker models or listing on Marketplace.
-
Parameters
-
content_types
(
list
[
str
] or
list
[
PipelineVariable
]
) – The supported MIME types
for the input data.
-
response_types
(
list
[
str
] or
list
[
PipelineVariable
]
) – The supported MIME types
for the output data.
-
inference_instances
(
list
[
str
] or
list
[
PipelineVariable
]
) – A list of the instance
types that are used to generate inferences in real-time.
-
transform_instances
(
list
[
str
] or
list
[
PipelineVariable
]
) – A list of the instance
types on which a transformation job can be run or on which an endpoint
can be deployed.
-
model_package_name
(
str
or
PipelineVariable
) – Model Package name, exclusive to
model_package_group_name
, using
model_package_name
makes the Model Package
un-versioned (default: None).
-
model_package_group_name
(
str
or
PipelineVariable
) – Model Package Group name,
exclusive to
model_package_name
, using
model_package_group_name
makes the
Model Package versioned (default: None).
-
image_uri
(
str
or
PipelineVariable
) – Inference image uri for the container. Model class’
self.image will be used if it is None (default: None).
-
model_metrics
(
ModelMetrics
) – ModelMetrics object (default: None).
-
metadata_properties
(
MetadataProperties
) – MetadataProperties (default: None).
-
marketplace_cert
(
bool
) – A boolean value indicating if the Model Package is certified
for AWS Marketplace (default: False).
-
approval_status
(
str
or
PipelineVariable
) – Model Approval Status, values can be
“Approved”, “Rejected”, or “PendingManualApproval”
(default: “PendingManualApproval”).
-
description
(
str
) – Model Package description (default: None).
-
drift_check_baselines
(
DriftCheckBaselines
) – DriftCheckBaselines object (default: None).
-
customer_metadata_properties
(
dict
[
str
,
str
] or
dict
[
str
,
PipelineVariable
]
) – A dictionary of key-value paired metadata properties (default: None).
-
domain
(
str
or
PipelineVariable
) – Domain values can be “COMPUTER_VISION”,
“NATURAL_LANGUAGE_PROCESSING”, “MACHINE_LEARNING” (default: None).
-
sample_payload_url
(
str
or
PipelineVariable
) – The S3 path where the sample payload
is stored (default: None).
-
task
(
str
or
PipelineVariable
) – Task values which are supported by Inference Recommender
are “FILL_MASK”, “IMAGE_CLASSIFICATION”, “OBJECT_DETECTION”, “TEXT_GENERATION”,
“IMAGE_SEGMENTATION”, “CLASSIFICATION”, “REGRESSION”, “OTHER” (default: None).
-
framework
(
str
or
PipelineVariable
) – Machine learning framework of the model package
container image (default: None).
-
framework_version
(
str
or
PipelineVariable
) – Framework version of the Model Package
Container Image (default: None).
-
nearest_model_name
(
str
or
PipelineVariable
) – Name of a pre-trained machine learning
benchmarked by Amazon SageMaker Inference Recommender (default: None).
-
data_input_configuration
(
str
or
PipelineVariable
) – Input object for the model
(default: None).
-
skip_model_validation
(
str
or
PipelineVariable
) – Indicates if you want to skip model
validation. Values can be “All” or “None” (default: None).
-
source_uri
(
str
or
PipelineVariable
) – The URI of the source for the model package
(default: None).
-
model_card
(
ModeCard
or
ModelPackageModelCard
) – document contains qualitative and
quantitative information about a model (default: None).
-
Returns
-
A string of SageMaker Model Package ARN.
-
Return type
prepare_container_def
(
instance_type
=
None
,
accelerator_type
=
None
,
serverless_inference_config
=
None
,
accept_eula
=
None
,
model_reference_arn
=
None
)
-
Return a container definition with framework configuration set in model environment.
-
Parameters
-
instance_type
(
str
) – The EC2 instance type to deploy this Model to.
For example, ‘ml.p2.xlarge’.
-
accelerator_type
(
str
) – The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model. For example, ‘ml.eia1.medium’.
-
serverless_inference_config
(
sagemaker.serverless.ServerlessInferenceConfig
) – Specifies configuration related to serverless endpoint. Instance type is
not provided in serverless inference. So this is used to find image URIs.
-
accept_eula
(
bool
) – For models that require a Model Access Config, specify True or
False to indicate whether model terms of use have been accepted.
The
accept_eula
value must be explicitly defined as
True
in order to
accept the end-user license agreement (EULA) that some
models require. (Default: None).
-
Returns
-
A container definition object usable with the
CreateModel API.
-
Return type
-
dict
[
str
,
str
]
serving_image_uri
(
region_name
,
instance_type
,
accelerator_type
=
None
,
serverless_inference_config
=
None
)
-
Create a URI for the serving image.
-
Parameters
-
region_name
(
str
) – AWS region where the image is uploaded.
-
instance_type
(
str
) – SageMaker instance type. Used to determine device type
(cpu/gpu/family-specific optimized).
-
serverless_inference_config
(
sagemaker.serverless.ServerlessInferenceConfig
) – Specifies configuration related to serverless endpoint. Instance type is
not provided in serverless inference. So this is used to determine device type.
-
Returns
-
The appropriate image URI based on the given parameters.
-
Return type
class
sagemaker.chainer.model.
ChainerPredictor
(
endpoint_name
,
sagemaker_session=None
,
serializer=<sagemaker.base_serializers.NumpySerializer
object>
,
deserializer=<sagemaker.base_deserializers.NumpyDeserializer
object>
,
component_name=None
)
-
Bases:
Predictor
A Predictor for inference against Chainer Endpoints.
This is able to serialize Python lists, dictionaries, and numpy arrays to
multidimensional tensors for Chainer inference.
Initialize an
ChainerPredictor
.
-
Parameters
-
endpoint_name
(
str
) – The name of the endpoint to perform inference
-
sagemaker_session
(
sagemaker.session.Session
) – Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
-
serializer
(
sagemaker.serializers.BaseSerializer
) – Optional. Default
serializes input data to .npy format. Handles lists and numpy
arrays.
-
deserializer
(
sagemaker.deserializers.BaseDeserializer
) – Optional.
Default parses the response from .npy format to numpy array.
-
component_name
(
str
) – Optional. Name of the Amazon SageMaker inference
component corresponding to the predictor.