添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • If ‘raise’, then invalid parsing will raise an exception
  • If ‘coerce’, then invalid parsing will be set as NaT
  • If ‘ignore’, then invalid parsing will return the input
  • dayfirst : boolean, default False

    Specify a date parse order if arg is str or its list-likes. If True, parses dates with the day first, eg 10/11/12 is parsed as 2012-11-10. Warning: dayfirst=True is not strict, but will prefer to parse with day first (this is a known bug, based on dateutil behavior).

    yearfirst : boolean, default False

    Specify a date parse order if arg is str or its list-likes.

  • If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12.
  • If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil).
  • Warning: yearfirst=True is not strict, but will prefer to parse with year first (this is a known bug, based on dateutil beahavior).

    utc : boolean, default None

    Return UTC DatetimeIndex if True (converting any tz-aware datetime.datetime objects as well).

    box : boolean, default True

  • If True returns a DatetimeIndex
  • If False returns ndarray of values.
  • format : string, default None

    strftime to parse time, eg “%d/%m/%Y”, note that “%f” will parse all the way up to nanoseconds.

    exact : boolean, True by default

  • If True, require an exact format match.
  • If False, allow the format to match anywhere in the target string.
  • unit : string, default ‘ns’

    unit of the arg (D,s,ms,us,ns) denote the unit in epoch (e.g. a unix timestamp), which is an integer/float number.

    infer_datetime_format : boolean, default False

    If True and no format is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x.

    Returns:

    ret : datetime if parsing succeeded.

    Return type depends on input:

  • list-like: DatetimeIndex
  • Series: Series of datetime64 dtype
  • scalar: Timestamp
  • In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or correspoding array/Series).

    Examples

    Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) or plurals of the same

    >>> df = pd.DataFrame({'year': [2015, 2016],
                           'month': [2, 3],
                           'day': [4, 5]})
    >>> pd.to_datetime(df)
    0   2015-02-04
    1   2016-03-05
    dtype: datetime64[ns]
    

    If a date does not meet the timestamp limitations, passing errors=’ignore’ will return the original input instead of raising any exception.

    Passing errors=’coerce’ will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-parseable dates) to NaT.

    >>> pd.to_datetime('13000101', format='%Y%m%d', errors='ignore')
    datetime.datetime(1300, 1, 1, 0, 0)
    >>> pd.to_datetime('13000101', format='%Y%m%d', errors='coerce')
    

    Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format.

    >>> s = pd.Series(['3/11/2000', '3/12/2000', '3/13/2000']*1000)
    
    >>> s.head()
    0    3/11/2000
    1    3/12/2000
    2    3/13/2000
    3    3/11/2000
    4    3/12/2000
    dtype: object
    
    >>> %timeit pd.to_datetime(s,infer_datetime_format=True)
    100 loops, best of 3: 10.4 ms per loop
    
    >>> %timeit pd.to_datetime(s,infer_datetime_format=False)
    1 loop, best of 3: 471 ms per loop