添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

Source code for ccdproc.combiner

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""This module implements the combiner class."""
import numpy as np
from numpy import ma
try:
    import bottleneck as bn
except ImportError:
    HAS_BOTTLENECK = False
else:
    HAS_BOTTLENECK = True
from .core import sigma_func
from astropy.nddata import CCDData, StdDevUncertainty
from astropy.stats import sigma_clip
from astropy.utils import deprecated_renamed_argument
from astropy import log
__all__ = ['Combiner', 'combine']
def _default_median(): # pragma: no cover
    if HAS_BOTTLENECK:
        return bn.nanmedian
    else:
        return np.nanmedian
def _default_average(): # pragma: no cover
    if HAS_BOTTLENECK:
        return bn.nanmean
    else:
        return np.nanmean
def _default_sum(): # pragma: no cover
    if HAS_BOTTLENECK:
        return bn.nansum
    else:
        return np.nansum
def _default_std(): # pragma: no cover
    if HAS_BOTTLENECK:
        return bn.nanstd
    else:
        return np.nanstd
[docs]
class Combiner:
    A class for combining CCDData objects.
    The Combiner class is used to combine together `~astropy.nddata.CCDData` objects
    including the method for combining the data, rejecting outlying data,
    and weighting used for combining frames.
    Parameters
    -----------
    ccd_iter : list or generator
        A list or generator of CCDData objects that will be combined together.
    dtype : str or `numpy.dtype` or None, optional
        Allows user to set dtype. See `numpy.array` ``dtype`` parameter
        description. If ``None`` it uses ``np.float64``.
        Default is ``None``.
    Raises
    ------
    TypeError
        If the ``ccd_iter`` are not `~astropy.nddata.CCDData` objects, have different
        units, or are different shapes.
    Examples
    --------
    The following is an example of combining together different
    `~astropy.nddata.CCDData` objects::
        >>> import numpy as np
        >>> import astropy.units as u
        >>> from astropy.nddata import CCDData
        >>> from ccdproc import Combiner
        >>> ccddata1 = CCDData(np.ones((4, 4)), unit=u.adu)
        >>> ccddata2 = CCDData(np.zeros((4, 4)), unit=u.adu)
        >>> ccddata3 = CCDData(np.ones((4, 4)), unit=u.adu)
        >>> c = Combiner([ccddata1, ccddata2, ccddata3])
        >>> ccdall = c.average_combine()
        >>> ccdall  # doctest: +FLOAT_CMP
        CCDData([[ 0.66666667,  0.66666667,  0.66666667,  0.66666667],
                 [ 0.66666667,  0.66666667,  0.66666667,  0.66666667],
                 [ 0.66666667,  0.66666667,  0.66666667,  0.66666667],
                 [ 0.66666667,  0.66666667,  0.66666667,  0.66666667]]...)
    def __init__(self, ccd_iter, dtype=None):
        if ccd_iter is None:
            raise TypeError("ccd_iter should be a list or a generator of CCDData objects.")
        if dtype is None:
            dtype = np.float64
        default_shape = None
        default_unit = None
        ccd_list = list(ccd_iter)
        for ccd in ccd_list:
            # raise an error if the objects aren't CCDData objects
            if not isinstance(ccd, CCDData):
                raise TypeError(
                    "ccd_list should only contain CCDData objects.")
            # raise an error if the shape is different
            if default_shape is None:
                default_shape = ccd.shape
            else:
                if not (default_shape == ccd.shape):
                    raise TypeError("CCDData objects are not the same size.")
            # raise an error if the units are different
            if default_unit is None:
                default_unit = ccd.unit
            else:
                if not (default_unit == ccd.unit):
                    raise TypeError("CCDData objects don't have the same unit.")
        self.ccd_list = ccd_list
        self.unit = default_unit
        self.weights = None
        self._dtype = dtype
        # set up the data array
        new_shape = (len(ccd_list),) + default_shape
        self.data_arr = ma.masked_all(new_shape, dtype=dtype)
        # populate self.data_arr
        for i, ccd in enumerate(ccd_list):
            self.data_arr[i] = ccd.data
            if ccd.mask is not None:
                self.data_arr.mask[i] = ccd.mask
            else:
                self.data_arr.mask[i] = ma.zeros(default_shape)
        # Must be after self.data_arr is defined because it checks the
        # length of the data array.
        self.scaling = None
    @property
    def dtype(self):
        return self._dtype
    @property
    def weights(self):
        Weights used when combining the `~astropy.nddata.CCDData` objects.
        Parameters
        ----------
        weight_values : `numpy.ndarray` or None
            An array with the weight values. The dimensions should match the
            the dimensions of the data arrays being combined.
        return self._weights
    @weights.setter
    def weights(self, value):
        if value is not None:
            if isinstance(value, np.ndarray):
                if value.shape != self.data_arr.data.shape:
                    if value.ndim != 1:
                        raise ValueError("1D weights expected when shapes of the data and weights differ.")
                    if value.shape[0] != self.data_arr.data.shape[0]:
                        raise ValueError("Length of weights not compatible with specified axis.")
                self._weights = value
            else:
                raise TypeError("weights must be a numpy.ndarray.")
        else:
            self._weights = None
    @property
    def scaling(self):
        Scaling factor used in combining images.
        Parameters
        ----------
        scale : function or `numpy.ndarray`-like or None, optional
            Images are multiplied by scaling prior to combining
            them. Scaling may be either a function, which will be applied to
            each image to determine the scaling factor, or a list or array
            whose length is the number of images in the `~ccdproc.Combiner`.
        return self._scaling
    @scaling.setter
    def scaling(self, value):
        if value is None:
            self._scaling = value
        else:
            n_images = self.data_arr.data.shape[0]
            if callable(value):
                self._scaling = [value(self.data_arr[i]) for
                                 i in range(n_images)]
                self._scaling = np.array(self._scaling)
            else:
                try:
                    len(value) == n_images
                    self._scaling = np.array(value)
                except TypeError:
                    raise TypeError("scaling must be a function or an array "
                                    "the same length as the number of images.")
            # reshape so that broadcasting occurs properly
            for i in range(len(self.data_arr.data.shape)-1):
                self._scaling = self.scaling[:, np.newaxis]
    # set up IRAF-like minmax clipping
[docs]
    def clip_extrema(self, nlow=0, nhigh=0):
        """Mask pixels using an IRAF-like minmax clipping algorithm.  The
        algorithm will mask the lowest nlow values and the highest nhigh values
        before combining the values to make up a single pixel in the resulting
        image.  For example, the image will be a combination of
        Nimages-nlow-nhigh pixel values instead of the combination of Nimages.
        Parameters
        -----------
        nlow : int or None, optional
            If not None, the number of low values to reject from the
            combination.
            Default is 0.
        nhigh : int or None, optional
            If not None, the number of high values to reject from the
            combination.
            Default is 0.
        Notes
        -----
        Note that this differs slightly from the nominal IRAF imcombine
        behavior when other masks are in use.  For example, if ``nhigh>=1`` and
        any pixel is already masked for some other reason, then this algorithm
        will count the masking of that pixel toward the count of nhigh masked
        pixels.
        Here is a copy of the relevant IRAF help text [0]_:
        nlow = 1, nhigh = (minmax)
            The number of low and high pixels to be rejected by the "minmax"
            algorithm. These numbers are converted to fractions of the total
            number of input images so that if no rejections have taken place
            the specified number of pixels are rejected while if pixels have
            been rejected by masking, thresholding, or nonoverlap, then the
            fraction of the remaining pixels, truncated to an integer, is used.
        References
        ----------
        .. [0] image.imcombine help text.
           http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?imcombine
        if nlow is None:
            nlow = 0
        if nhigh is None:
            nhigh = 0
        argsorted = np.argsort(self.data_arr.data, axis=0)
        mg = np.mgrid[[slice(ndim)
                       for i, ndim in enumerate(self.data_arr.shape) if i > 0]]
        for i in range(-1*nhigh, nlow):
            # create a tuple with the indices
            where = tuple([argsorted[i, :, :].ravel()] +
                          [i.ravel() for i in mg])
            self.data_arr.mask[where] = True
# set up min/max clipping algorithms [docs] def minmax_clipping ( self , min_clip = None , max_clip = None ): """Mask all pixels that are below min_clip or above max_clip. Parameters ----------- min_clip : float or None, optional If not None, all pixels with values below min_clip will be masked. Default is ``None``. max_clip : float or None, optional If not None, all pixels with values above min_clip will be masked. Default is ``None``. if min_clip is not None : mask = ( self . data_arr < min_clip ) self . data_arr . mask [ mask ] = True if max_clip is not None : mask = ( self . data_arr > max_clip ) self . data_arr . mask [ mask ] = True # set up sigma clipping algorithms [docs] @deprecated_renamed_argument ( 'use_astropy' , None , arg_in_kwargs = True , since = '2.4.0' , message = 'The use_astropy argument has been removed because ' 'astropy sigma clipping is now always used.' def sigma_clipping ( self , low_thresh = 3 , high_thresh = 3 , func = 'mean' , dev_func = 'std' , ** kwd ): Pixels will be rejected if they have deviations greater than those set by the threshold values. The algorithm will first calculated a baseline value using the function specified in func and deviation based on dev_func and the input data array. Any pixel with a deviation from the baseline value greater than that set by high_thresh or lower than that set by low_thresh will be rejected. Parameters ----------- low_thresh : positive float or None, optional Threshold for rejecting pixels that deviate below the baseline value. If negative value, then will be convert to a positive value. If None, no rejection will be done based on low_thresh. Default is 3. high_thresh : positive float or None, optional Threshold for rejecting pixels that deviate above the baseline value. If None, no rejection will be done based on high_thresh. Default is 3. func : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanmean`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. dev_func : {'std', 'mad_std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If using a callable function/object and the ``axis`` keyword is used, then it must be able to ignore NaNs (e.g., `numpy.nanstd`) and it must have an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. Any remaining keyword arguments are passed to astropy's :func:`~astropy.stats.sigma_clip` function. # Remove in 3.0 _ = kwd . pop ( 'use_astropy' , True ) self . data_arr . mask = sigma_clip ( self . data_arr . data , sigma_lower = low_thresh , sigma_upper = high_thresh , axis = kwd . get ( 'axis' , 0 ), copy = kwd . get ( 'copy' , False ), maxiters = kwd . get ( 'maxiters' , 1 ), cenfunc = func , stdfunc = dev_func , masked = True , ** kwd ) . mask def _get_scaled_data ( self , scale_arg ): if scale_arg is not None : return self . data_arr * scale_arg if self . scaling is not None : return self . data_arr * self . scaling return self . data_arr def _get_nan_substituted_data ( self , data ): # Get the data as an unmasked array with masked values filled as NaN if self . data_arr . mask . any (): data = np . ma . filled ( data , fill_value = np . nan ) else : data = data . data return data def _combination_setup ( self , user_func , default_func , scale_to ): Handle the common pieces of image combination data/mask setup. data = self . _get_scaled_data ( scale_to ) # Play it safe for now and only do the nan thing if the user is using # the default combination function. if user_func is None : combo_func = default_func # Subtitute NaN for masked entries data = self . _get_nan_substituted_data ( data ) masked_values = np . isnan ( data ) . sum ( axis = 0 ) else : masked_values = self . data_arr . mask . sum ( axis = 0 ) combo_func = user_func return data , masked_values , combo_func # set up the combining algorithms [docs] def median_combine ( self , median_func = None , scale_to = None , uncertainty_func = sigma_func ): Median combine a set of arrays. A `~astropy.nddata.CCDData` object is returned with the data property set to the median of the arrays. If the data was masked or any data have been rejected, those pixels will not be included in the median. A mask will be returned, and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image is set by 1.4826 times the median absolute deviation of all input images. Parameters ---------- median_func : function, optional Function that calculates median of a `numpy.ma.MaskedArray`. Default is `numpy.ma.median`. scale_to : float or None, optional Scaling factor used in the average combined image. If given, it overrides `scaling`. Defaults to None. uncertainty_func : function, optional Function to calculate uncertainty. Defaults is `~ccdproc.sigma_func`. Returns ------- combined_image: `~astropy.nddata.CCDData` CCDData object based on the combined input of CCDData objects. Warnings -------- The uncertainty currently calculated using the median absolute deviation does not account for rejected pixels. data , masked_values , median_func = \ self . _combination_setup ( median_func , _default_median (), scale_to ) medianed = median_func ( data , axis = 0 ) # set the mask mask = ( masked_values == len ( self . data_arr )) # set the uncertainty # This still uses numpy for the median because the astropy # code requires that the median function take the argument # overwrite_input and bottleneck doesn't allow that argument. # This is ugly, but setting ignore_nan to True should make sure # that either nans or masks are handled properly. if uncertainty_func is sigma_func : uncertainty = uncertainty_func ( data , axis = 0 , ignore_nan = True ) else : uncertainty = uncertainty_func ( data , axis = 0 ) # Divide uncertainty by the number of pixel (#309) uncertainty /= np . sqrt ( len ( self . data_arr ) - masked_values ) # Convert uncertainty to plain numpy array (#351) # There is no need to care about potential masks because the # uncertainty was calculated based on the data so potential masked # elements are also masked in the data. No need to keep two identical # masks. uncertainty = np . asarray ( uncertainty ) # create the combined image with a dtype matching the combiner combined_image = CCDData ( np . asarray ( medianed , dtype = self . dtype ), mask = mask , unit = self . unit , uncertainty = StdDevUncertainty ( uncertainty )) # update the meta data combined_image . meta [ 'NCOMBINE' ] = len ( self . data_arr ) # return the combined image return combined_image def _weighted_sum ( self , data , sum_func ): Perform weighted sum, used by both ``sum_combine`` and in some cases by ``average_combine``. if self . weights . shape != data . shape : # Add extra axes to the weights for broadcasting weights = np . reshape ( self . weights , [ len ( self . weights ), 1 , 1 ]) else : weights = self . weights # Turns out bn.nansum has an implementation that is not # precise enough for float32 sums. Doing this should # ensure the sums are carried out as float64 weights = weights . astype ( 'float64' ) weighted_sum = sum_func ( data * weights , axis = 0 ) return weighted_sum , weights [docs] def average_combine ( self , scale_func = None , scale_to = None , uncertainty_func = _default_std (), sum_func = _default_sum ()): Average combine together a set of arrays. A `~astropy.nddata.CCDData` object is returned with the data property set to the average of the arrays. If the data was masked or any data have been rejected, those pixels will not be included in the average. A mask will be returned, and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image is set by the standard deviation of the input images. Parameters ---------- scale_func : function, optional Function to calculate the average. Defaults to `numpy.nanmean`. scale_to : float or None, optional Scaling factor used in the average combined image. If given, it overrides `scaling`. Defaults to ``None``. uncertainty_func : function, optional Function to calculate uncertainty. Defaults to `numpy.ma.std`. sum_func : function, optional Function used to calculate sums, including the one done to find the weighted average. Defaults to `numpy.nansum`. Returns ------- combined_image: `~astropy.nddata.CCDData` CCDData object based on the combined input of CCDData objects. data , masked_values , scale_func = \ self . _combination_setup ( scale_func , _default_average (), scale_to ) # # set up the data # data = self._get_scaled_data(scale_to) # # Subtitute NaN for masked entries # data = self._get_nan_substituted_data(data) # Do NOT modify data after this -- we need it to be intact when we # we get to the uncertainty calculation. if self . weights is not None : weighted_sum , weights = self . _weighted_sum ( data , sum_func ) mean = weighted_sum / sum_func ( weights , axis = 0 ) else : mean = scale_func ( data , axis = 0 ) # calculate the mask mask = ( masked_values == len ( self . data_arr )) # set up the deviation uncertainty = uncertainty_func ( data , axis = 0 ) # Divide uncertainty by the number of pixel (#309) uncertainty /= np . sqrt ( len ( data ) - masked_values ) # Convert uncertainty to plain numpy array (#351) uncertainty = np . asarray ( uncertainty ) # create the combined image with a dtype that matches the combiner combined_image = CCDData ( np . asarray ( mean , dtype = self . dtype ), mask = mask , unit = self . unit , uncertainty = StdDevUncertainty ( uncertainty )) # update the meta data combined_image . meta [ 'NCOMBINE' ] = len ( data ) # return the combined image return combined_image [docs] def sum_combine ( self , sum_func = None , scale_to = None , uncertainty_func = _default_std ()): Sum combine together a set of arrays. A `~astropy.nddata.CCDData` object is returned with the data property set to the sum of the arrays. If the data was masked or any data have been rejected, those pixels will not be included in the sum. A mask will be returned, and if a pixel has been rejected in all images, it will be masked. The uncertainty of the combined image is set by the multiplication of summation of standard deviation of the input by square root of number of images. Because sum_combine returns 'pure sum' with masked pixels ignored, if re-scaled sum is needed, average_combine have to be used with multiplication by number of images combined. Parameters ---------- sum_func : function, optional Function to calculate the sum. Defaults to `numpy.nansum` or ``bottleneck.nansum``. scale_to : float or None, optional Scaling factor used in the sum combined image. If given, it overrides `scaling`. Defaults to ``None``. uncertainty_func : function, optional Function to calculate uncertainty. Defaults to `numpy.ma.std`. Returns ------- combined_image: `~astropy.nddata.CCDData` CCDData object based on the combined input of CCDData objects. data , masked_values , sum_func = \ self . _combination_setup ( sum_func , _default_sum (), scale_to ) if self . weights is not None : summed , weights = self . _weighted_sum ( data , sum_func ) else : summed = sum_func ( data , axis = 0 ) # set up the mask mask = ( masked_values == len ( self . data_arr )) # set up the deviation uncertainty = uncertainty_func ( data , axis = 0 ) # Divide uncertainty by the number of pixel (#309) uncertainty /= np . sqrt ( len ( data ) - masked_values ) # Convert uncertainty to plain numpy array (#351) uncertainty = np . asarray ( uncertainty ) # Multiply uncertainty by square root of the number of images uncertainty *= len ( data ) - masked_values # create the combined image with a dtype that matches the combiner combined_image = CCDData ( np . asarray ( summed , dtype = self . dtype ), mask = mask , unit = self . unit , uncertainty = StdDevUncertainty ( uncertainty )) # update the meta data combined_image . meta [ 'NCOMBINE' ] = len ( self . data_arr ) # return the combined image return combined_image def _calculate_step_sizes ( x_size , y_size , num_chunks ): Calculate the strides in x and y to achieve at least the ``num_chunks`` pieces. Parameters ---------- # First we try to split only along fast x axis xstep = max ( 1 , int ( x_size / num_chunks )) # More chunks are needed only if xstep gives us fewer chunks than # requested. x_chunks = int ( x_size / xstep ) if x_chunks >= num_chunks : ystep = y_size else : # The x and y loops are nested, so the number of chunks # is multiplicative, not additive. Calculate the number # of y chunks we need to get at num_chunks. y_chunks = int ( num_chunks / x_chunks ) + 1 ystep = max ( 1 , int ( y_size / y_chunks )) return xstep , ystep def _calculate_size_of_image ( ccd , combine_uncertainty_function ): # If uncertainty_func is given for combine this will create an uncertainty # even if the originals did not have one. In that case we need to create # an empty placeholder. if ccd . uncertainty is None and combine_uncertainty_function is not None : ccd . uncertainty = StdDevUncertainty ( np . zeros ( ccd . data . shape )) size_of_an_img = ccd . data . nbytes try : size_of_an_img += ccd . uncertainty . array . nbytes # In case uncertainty is None it has no "array" and in case the "array" is # not a numpy array: except AttributeError : # Mask is enforced to be a numpy.array across astropy versions if ccd . mask is not None : size_of_an_img += ccd . mask . nbytes # flags is not necessarily a numpy array so do not fail with an # AttributeError in case something was set! # TODO: Flags are not taken into account in Combiner. This number is added # nevertheless for future compatibility. try : size_of_an_img += ccd . flags . nbytes except AttributeError : return size_of_an_img [docs] def combine ( img_list , output_file = None , method = 'average' , weights = None , scale = None , mem_limit = 16e9 , clip_extrema = False , nlow = 1 , nhigh = 1 , minmax_clip = False , minmax_clip_min = None , minmax_clip_max = None , sigma_clip = False , sigma_clip_low_thresh = 3 , sigma_clip_high_thresh = 3 , sigma_clip_func = ma . mean , sigma_clip_dev_func = ma . std , dtype = None , combine_uncertainty_function = None , overwrite_output = False , ** ccdkwargs ): Convenience function for combining multiple images. Parameters ----------- img_list : `numpy.ndarray`, list or str A list of fits filenames or `~astropy.nddata.CCDData` objects that will be combined together. Or a string of fits filenames separated by comma output_file : str or None, optional Optional output fits file-name to which the final output can be directly written. Default is ``None``. method : str, optional Method to combine images: - ``'average'`` : To combine by calculating the average. - ``'median'`` : To combine by calculating the median. - ``'sum'`` : To combine by calculating the sum. Default is ``'average'``. weights : `numpy.ndarray` or None, optional Weights to be used when combining images. An array with the weight values. The dimensions should match the the dimensions of the data arrays being combined. Default is ``None``. scale : function or `numpy.ndarray`-like or None, optional Scaling factor to be used when combining images. Images are multiplied by scaling prior to combining them. Scaling may be either a function, which will be applied to each image to determine the scaling factor, or a list or array whose length is the number of images in the `Combiner`. Default is ``None``. mem_limit : float, optional Maximum memory which should be used while combining (in bytes). Default is ``16e9``. clip_extrema : bool, optional Set to True if you want to mask pixels using an IRAF-like minmax clipping algorithm. The algorithm will mask the lowest nlow values and the highest nhigh values before combining the values to make up a single pixel in the resulting image. For example, the image will be a combination of Nimages-low-nhigh pixel values instead of the combination of Nimages. Parameters below are valid only when clip_extrema is set to True, see :meth:`Combiner.clip_extrema` for the parameter description: - ``nlow`` : int or None, optional - ``nhigh`` : int or None, optional minmax_clip : bool, optional Set to True if you want to mask all pixels that are below minmax_clip_min or above minmax_clip_max before combining. Default is ``False``. Parameters below are valid only when minmax_clip is set to True, see :meth:`Combiner.minmax_clipping` for the parameter description: - ``minmax_clip_min`` : float or None, optional - ``minmax_clip_max`` : float or None, optional sigma_clip : bool, optional Set to True if you want to reject pixels which have deviations greater than those set by the threshold values. The algorithm will first calculated a baseline value using the function specified in func and deviation based on sigma_clip_dev_func and the input data array. Any pixel with a deviation from the baseline value greater than that set by sigma_clip_high_thresh or lower than that set by sigma_clip_low_thresh will be rejected. Default is ``False``. Parameters below are valid only when sigma_clip is set to True. See :meth:`Combiner.sigma_clipping` for the parameter description. - ``sigma_clip_low_thresh`` : positive float or None, optional - ``sigma_clip_high_thresh`` : positive float or None, optional - ``sigma_clip_func`` : function, optional - ``sigma_clip_dev_func`` : function, optional dtype : str or `numpy.dtype` or None, optional The intermediate and resulting ``dtype`` for the combined CCDs. See `ccdproc.Combiner`. If ``None`` this is set to ``float64``. Default is ``None``. combine_uncertainty_function : callable, None, optional If ``None`` use the default uncertainty func when using average, median or sum combine, otherwise use the function provided. Default is ``None``. overwrite_output : bool, optional If ``output_file`` is specified, this is passed to the `astropy.nddata.fits_ccddata_writer` under the keyword ``overwrite``; has no effect otherwise. Default is ``False``. ccdkwargs : Other keyword arguments for `astropy.nddata.fits_ccddata_reader`. Returns ------- combined_image : `~astropy.nddata.CCDData` CCDData object based on the combined input of CCDData objects. if not isinstance ( img_list , list ): # If not a list, check whether it is a numpy ndarray or string of # filenames separated by comma if isinstance ( img_list , np . ndarray ): img_list = img_list . tolist () elif isinstance ( img_list , str ) and ( ',' in img_list ): img_list = img_list . split ( ',' ) else : try : # Maybe the input can be made into a list, so try that img_list = list ( img_list ) except TypeError : raise ValueError ( "unrecognised input for list of images to combine." ) # Select Combine function to call in Combiner if method == 'average' : combine_function = 'average_combine' elif method == 'median' : combine_function = 'median_combine' elif method == 'sum' : combine_function = 'sum_combine' else : raise ValueError ( "unrecognised combine method : {0} ." . format ( method )) # First we create a CCDObject from first image for storing output if isinstance ( img_list [ 0 ], CCDData ): ccd = img_list [ 0 ] . copy () else : # User has provided fits filenames to read from ccd = CCDData . read ( img_list [ 0 ], ** ccdkwargs ) if dtype is None : dtype = np . float64 # Convert the master image to the appropriate dtype so when overwriting it # later the data is not downcast and the memory consumption calculation # uses the internally used dtype instead of the original dtype. #391 if ccd . data . dtype != dtype : ccd . data = ccd . data . astype ( dtype ) # If the template image doesn't have an uncertainty, add one, because the # result always has an uncertainty. if ccd . uncertainty is None : ccd . uncertainty = StdDevUncertainty ( np . zeros_like ( ccd . data )) # If the template doesn't have a mask, add one, because the result may have # a mask if ccd . mask is None : ccd . mask = np . zeros_like ( ccd . data , dtype = bool ) size_of_an_img = _calculate_size_of_image ( ccd , combine_uncertainty_function ) no_of_img = len ( img_list ) # Set a memory use factor based on profiling if method == 'median' : memory_factor = 3 else : memory_factor = 2 memory_factor *= 1.3 # determine the number of chunks to split the images into no_chunks = int (( memory_factor * size_of_an_img * no_of_img ) / mem_limit ) + 1 if no_chunks > 1 : log . info ( 'splitting each image into {0} chunks to limit memory usage ' 'to {1} bytes.' . format ( no_chunks , mem_limit )) xs , ys = ccd . data . shape # Calculate strides for loop xstep , ystep = _calculate_step_sizes ( xs , ys , no_chunks ) # Dictionary of Combiner properties to set and methods to call before # combining to_set_in_combiner = {} to_call_in_combiner = {} # Define all the Combiner properties one wants to apply before combining # images if weights is not None : to_set_in_combiner [ 'weights' ] = weights if scale is not None : # If the scale is a function, then scaling function need to be applied # on full image to obtain scaling factor and create an array instead. if callable ( scale ): scalevalues = [] for image in img_list : if isinstance ( image , CCDData ): imgccd = image else : imgccd = CCDData . read ( image , ** ccdkwargs ) scalevalues . append ( scale ( imgccd . data )) to_set_in_combiner [ 'scaling' ] = np . array ( scalevalues ) else : to_set_in_combiner [ 'scaling' ] = scale if clip_extrema : to_call_in_combiner [ 'clip_extrema' ] = { 'nlow' : nlow , 'nhigh' : nhigh } if minmax_clip : to_call_in_combiner [ 'minmax_clipping' ] = { 'min_clip' : minmax_clip_min , 'max_clip' : minmax_clip_max } if sigma_clip : to_call_in_combiner [ 'sigma_clipping' ] = { 'low_thresh' : sigma_clip_low_thresh , 'high_thresh' : sigma_clip_high_thresh , 'func' : sigma_clip_func , 'dev_func' : sigma_clip_dev_func } # Finally Run the input method on all the subsections of the image # and write final stitched image to ccd for x in range ( 0 , xs , xstep ): for y in range ( 0 , ys , ystep ): xend , yend = min ( xs , x + xstep ), min ( ys , y + ystep ) ccd_list = [] for image in img_list : if isinstance ( image , CCDData ): imgccd = image else : imgccd = CCDData . read ( image , ** ccdkwargs ) # Trim image and copy # The copy is *essential* to avoid having a bunch # of unused file references around if the files # are memory-mapped. See this PR for details # https://github.com/astropy/ccdproc/pull/630 ccd_list . append ( imgccd [ x : xend , y : yend ] . copy ()) # Create Combiner for tile tile_combiner = Combiner ( ccd_list , dtype = dtype ) # Set all properties and call all methods for to_set in to_set_in_combiner : setattr ( tile_combiner , to_set , to_set_in_combiner [ to_set ]) for to_call in to_call_in_combiner : getattr ( tile_combiner , to_call )( ** to_call_in_combiner [ to_call ]) # Finally call the combine algorithm combine_kwds = {} if combine_uncertainty_function is not None : combine_kwds [ 'uncertainty_func' ] = combine_uncertainty_function comb_tile = getattr ( tile_combiner , combine_function )( ** combine_kwds ) # add it back into the master image ccd . data [ x : xend , y : yend ] = comb_tile . data if ccd . mask is not None : ccd . mask [ x : xend , y : yend ] = comb_tile . mask if ccd . uncertainty is not None : ccd . uncertainty . array [ x : xend , y : yend ] = comb_tile . uncertainty . array # Free up memory to try to stay under user's limit del comb_tile del tile_combiner del ccd_list # Write fits file if filename was provided if output_file is not None : ccd . write ( output_file , overwrite = overwrite_output ) return ccd