Contents
- 1 Python Training Overview
-
2
Python Course Content
-
2.1
Core Python
- 2.1.1 Introduction to Languages
- 2.1.2 Introduction to Python
- 2.1.3 Python Software’s
- 2.1.4 Python Language Fundamentals
- 2.1.5 Different Modes of Python
- 2.1.6 Python Variables
- 2.1.7 Operators
- 2.1.8 Input & Output Operators
- 2.1.9 Data Structures or Collections
- 2.1.10 List Collection
- 2.1.11 Tuple Collection
- 2.1.12 Set Collection
- 2.1.13 Dictionary Collection
- 2.1.14 Functions
- 2.2 Advanced Python
- 2.3 PANDAS
- 2.4 NUMPY
-
2.1
Core Python
Python Training Overview
Python is a general-purpose interpreted, interactive, object-oriented, and high-level programming language. Python has been one of the premier, flexible, and powerful open-source language that is easy to learn, easy to use, and has powerful libraries for data manipulation and analysis
What are the Python Course Pre-requisites
There are no hard pre-requisites. Basic understanding of Computer Programming terminologies is sufficient. Also, basic concepts related to Programming and Database is beeficial but not mandatory.
Objectives of the Course
Who should do the course
Python Training Course Duration
Python Course Content
Core Python
Introduction to Languages
Introduction to Python
Python Software’s
Python Language Fundamentals
Different Modes of Python
Python Variables
Operators
Input & Output Operators
Control Statements
Data Structures or Collections
List Collection
Tuple Collection
Set Collection
Dictionary Collection
Functions
Advanced Python
Python Modules
Packages
iii) Operator Overloading
Exception Handling & Types of Errors
Regular expressions
File &Directory handling
Python Logging
Date & Time module
OS module
Multi-threading & Multi Processing
Garbage collection
Python Data Base Communications(PDBC)
Python – Network Programming
Tkinter & Turtle
Data analytics modules
DJANGO
PANDAS
Pandas – Introduction
Pandas – Environment Setup
Pandas – Introduction to Data Structures
Pandas — Series
Pandas – DataFrame
Pandas – Panel
Pandas – Basic Functionality
Pandas – Descriptive Statistics
Pandas – Function Application
Pandas – Reindexing
Pandas – Iteration
Pandas – Sorting
Pandas – Working with Text Data
Pandas – Options and Customization
Pandas – Indexing and Selecting Data
Pandas – Statistical Functions
Pandas – Window Functions
Pandas – Aggregations
Pandas – Missing Data
Pandas – GroupBy
Pandas – Merging/Joining
Pandas – Concatenation
Pandas – Date Functionality
Pandas – Timedelta
Pandas – Categorical Data
Pandas – Visualization
Pandas – IO Tools
Pandas – Sparse Data
Pandas – Caveats & Gotchas
Pandas – Comparison with SQL
NUMPY
NUMPY − INTRODUCTION
NUMPY − ENVIRONMENT
NUMPY − NDARRAY OBJECT
NUMPY − DATA TYPES
NUMPY − ARRAY ATTRIBUTES
NUMPY − ARRAY CREATION ROUTINES
NUMPY − ARRAY FROM EXISTING DATA
NUMPY − ARRAY FROM NUMERICAL RANGES
NUMPY − INDEXING & SLICING
NUMPY − ADVANCED INDEXING
NUMPY − BROADCASTING
NUMPY − ITERATING OVER ARRAY
NUMPY – ARRAY MANIPULATION
NUMPY – BINARY OPERATORS
NUMPY − STRING FUNCTIONS
NUMPY − MATHEMATICAL FUNCTIONS
NUMPY − ARITHMETIC OPERATIONS
NUMPY − STATISTICAL FUNCTIONS
NUMPY − SORT, SEARCH & COUNTING FUNCTIONS
NUMPY − BYTE SWAPPING
NUMPY − COPIES & VIEWS
NUMPY − MATRIX LIBRARY
NUMPY − LINEAR ALGEBRA
NUMPY − MATPLOTLIB
NUMPY – HISTOGRAM USING MATPLOTLIB
NUMPY − I/O WITH NUMPY
For Python Training in Chennai and Hyderabad
Click Here For Python Online Training