添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

• Hardware (T4/V100/Xavier/Nano/etc)
tesla t4

• Network Type (Detectnet_v2/Faster_rcnn/Yolo_v4/LPRnet/Mask_rcnn/Classification/etc)
action_recognition_net

• TLT Version (Please run “tlt info --verbose” and share “docker_tag” here)
format_version: 2.0
toolkit_version: 4.0.1
published_date: 03/06/2023

• Training spec file(If have, please share here)

train_rgb_3d_finetune.yaml:

output_dir: /results/rgb_3d_ptm
encryption_key: nvidia_tao
model_config:
  model_type: rgb
  backbone: resnet18
  rgb_seq_length: 3
  input_type: 3d
  sample_strategy: consecutive
  dropout_ratio: 0.0
train_config:
  optim:
    lr: 0.001
    momentum: 0.9
    weight_decay: 0.0001
    lr_scheduler: MultiStep
    lr_steps: [5, 15, 20]
    lr_decay: 0.1
  epochs: 20
  checkpoint_interval: 1
dataset_config:
  train_dataset_dir: /data/train
  val_dataset_dir: /data/test
  label_map:
    throw: 0
  output_shape:
  - 224
  - 224
  batch_size: 32
  workers: 8
  clips_per_video: 5
  augmentation_config:
    train_crop_type: no_crop
    horizontal_flip_prob: 0.5
    rgb_input_mean: [0.5]
    rgb_input_std: [0.5]
    val_center_crop: False

• How to reproduce the issue ? (This is for errors. Please share the command line and the detailed log here.)

print("Train RGB only model with PTM")
!tao action_recognition train \
                  -e $SPECS_DIR/train_rgb_3d_finetune.yaml \
                  -r $RESULTS_DIR/rgb_3d_ptm \
                  -k $KEY \
                  model_config.rgb_pretrained_model_path=$RESULTS_DIR/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt  \
                  model_config.rgb_pretrained_num_classes=5

I tried to train the model with custom action recognition for ‘throw’ but it is giving me this error as shown below:

Error Log:

Train RGB only model with PTM
2023-05-23 11:11:12,944 [INFO] root: Registry: ['nvcr.io']
2023-05-23 11:11:12,998 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-pyt
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
[NeMo W 2023-05-23 11:11:26 nemo_logging:349] <frozen cv.action_recognition.scripts.train>:81: UserWarning: 
    'train_rgb_3d_finetune.yaml' is validated against ConfigStore schema with the same name.
    This behavior is deprecated in Hydra 1.1 and will be removed in Hydra 1.2.
    See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/automatic_schema_matching for migration instructions.
Created a temporary directory at /tmp/tmpuro6y_xl
Writing /tmp/tmpuro6y_xl/_remote_module_non_scriptable.py
loading trained weights from /results/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt
ResNet3d(
  (conv1): Conv3d(3, 64, kernel_size=(5, 7, 7), stride=(2, 2, 2), padding=(2, 3, 3), bias=False)
  (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool3d(kernel_size=(1, 3, 3), stride=2, padding=(0, 1, 1), dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer2): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer3): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer4): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (avg_pool): AdaptiveAvgPool3d(output_size=(1, 1, 1))
  (fc_cls): Linear(in_features=512, out_features=1, bias=True)
[NeMo W 2023-05-23 11:11:31 nemo_logging:349] /opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:151: LightningDeprecationWarning: Setting `Trainer(checkpoint_callback=False)` is deprecated in v1.5 and will be removed in v1.7. Please consider using `Trainer(enable_checkpointing=False)`.
      rank_zero_deprecation(
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Missing logger folder: /results/rgb_3d_ptm/lightning_logs
Train dataset samples: 70
Validation dataset samples: 30
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Adjusting learning rate of group 0 to 1.0000e-03.
  | Name           | Type     | Params
--------------------------------------------
0 | model          | ResNet3d | 33.2 M
1 | train_accuracy | Accuracy | 0     
2 | val_accuracy   | Accuracy | 0     
--------------------------------------------
33.2 M    Trainable params
0         Non-trainable params
33.2 M    Total params
132.742   Total estimated model params size (MB)
Sanity Checking: 0it [00:00, ?it/s][NeMo W 2023-05-23 11:11:31 nemo_logging:349] <frozen cv.action_recognition.dataloader.frame_sampler>:63: RuntimeWarning: divide by zero encountered in remainder
Error executing job with overrides: ['output_dir=/results/rgb_3d_ptm', 'encryption_key=nvidia_tao', 'model_config.rgb_pretrained_model_path=/results/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt', 'model_config.rgb_pretrained_num_classes=5']
An error occurred during Hydra's exception formatting:
AssertionError()
Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 252, in run_and_report
    assert mdl is not None
AssertionError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File "</opt/conda/lib/python3.8/site-packages/nvidia_tao_pytorch/cv/action_recognition/scripts/train.py>", line 3, in <module>
  File "<frozen cv.action_recognition.scripts.train>", line 81, in <module>
  File "<frozen cv.super_resolution.scripts.configs.hydra_runner>", line 99, in wrapper
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 377, in _run_hydra
    run_and_report(
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 294, in run_and_report
    raise ex
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 211, in run_and_report
    return func()
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 378, in <lambda>
    lambda: hydra.run(
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 111, in run
    _ = ret.return_value
  File "/opt/conda/lib/python3.8/site-packages/hydra/core/utils.py", line 233, in return_value
    raise self._return_value
  File "/opt/conda/lib/python3.8/site-packages/hydra/core/utils.py", line 160, in run_job
    ret.return_value = task_function(task_cfg)
  File "<frozen cv.action_recognition.scripts.train>", line 75, in main
  File "<frozen cv.action_recognition.scripts.train>", line 64, in run_experiment
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 771, in fit
    self._call_and_handle_interrupt(
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 724, in _call_and_handle_interrupt
    return trainer_fn(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 812, in _fit_impl
    results = self._run(model, ckpt_path=self.ckpt_path)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1237, in _run
    results = self._run_stage()
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1324, in _run_stage
    return self._run_train()
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1346, in _run_train
    self._run_sanity_check()
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py", line 1414, in _run_sanity_check
    val_loop.run()
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
    self.advance(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 153, in advance
    dl_outputs = self.epoch_loop.run(self._data_fetcher, dl_max_batches, kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loops/base.py", line 204, in run
    self.advance(*args, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 111, in advance
    batch = next(data_fetcher)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 184, in __next__
    return self.fetching_function()
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 259, in fetching_function
    self._fetch_next_batch(self.dataloader_iter)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/utilities/fetching.py", line 273, in _fetch_next_batch
    batch = next(iterator)
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 681, in __next__
    data = self._next_data()
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1374, in _next_data
    return self._process_data(data)
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 1400, in _process_data
    data.reraise()
  File "/opt/conda/lib/python3.8/site-packages/torch/_utils.py", line 543, in reraise
    raise exception
IndexError: Caught IndexError in DataLoader worker process 0.
Original Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 302, in _worker_loop
    data = fetcher.fetch(index)
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in fetch
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "/opt/conda/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 49, in <listcomp>
    data = [self.dataset[idx] for idx in possibly_batched_index]
  File "<frozen cv.action_recognition.dataloader.ar_dataset>", line 239, in __getitem__
  File "<frozen cv.action_recognition.dataloader.ar_dataset>", line 203, in get_frames
IndexError: list index out of range
Telemetry data couldn't be sent, but the command ran successfully.
[Error]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2023-05-23 11:11:36,292 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.
              

Thanks it is my dataset problem but why is the command not running properly to process the raw_videos to images.

!cd tao_toolkit_recipes/tao_action_recognition/data_generation/ && bash ./preprocess_HMDB_RGB.sh $HOST_DATA_DIR/raw_data $HOST_DATA_DIR/processed_data

As you can see, it shows that all the directory is empty even after running the above command. The raw_data/throw are correct but it is not preprocessing it properly.
image1190×831 94.4 KB

Thank you

I copied the code from github to the “preprocess_HMDB_RGB.sh” and ran on terminal but it still doesn’t process the videos into frames giving the same output as from the notebook.

I checked the videos from the raw_data/throw are not corrupted.
image2001×1026 381 KB

What is the error? I set the config to run 18 epochs but it seems to have an error after finishing the 17 epoch.

Train RGB only model with PTM
2023-05-24 07:51:44,015 [INFO] root: Registry: ['nvcr.io']
2023-05-24 07:51:44,068 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-pyt
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
[NeMo W 2023-05-24 07:51:57 nemo_logging:349] <frozen cv.action_recognition.scripts.train>:81: UserWarning: 
    'train_rgb_3d_finetune.yaml' is validated against ConfigStore schema with the same name.
    This behavior is deprecated in Hydra 1.1 and will be removed in Hydra 1.2.
    See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/automatic_schema_matching for migration instructions.
Created a temporary directory at /tmp/tmpw74w6lw9
Writing /tmp/tmpw74w6lw9/_remote_module_non_scriptable.py
loading trained weights from /results/pretrained/actionrecognitionnet_vtrainable_v1.0/resnet18_3d_rgb_hmdb5_32.tlt
ResNet3d(
  (conv1): Conv3d(3, 64, kernel_size=(5, 7, 7), stride=(2, 2, 2), padding=(2, 3, 3), bias=False)
  (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool3d(kernel_size=(1, 3, 3), stride=2, padding=(0, 1, 1), dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer2): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer3): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer4): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (avg_pool): AdaptiveAvgPool3d(output_size=(1, 1, 1))
  (fc_cls): Linear(in_features=512, out_features=1, bias=True)
[NeMo W 2023-05-24 07:52:02 nemo_logging:349] /opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:151: LightningDeprecationWarning: Setting `Trainer(checkpoint_callback=False)` is deprecated in v1.5 and will be removed in v1.7. Please consider using `Trainer(enable_checkpointing=False)`.
      rank_zero_deprecation(
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
Missing logger folder: /results/rgb_3d_ptm/lightning_logs
Train dataset samples: 70
Validation dataset samples: 30
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
Adjusting learning rate of group 0 to 1.0000e-03.
  | Name           | Type     | Params
--------------------------------------------
0 | model          | ResNet3d | 33.2 M
1 | train_accuracy | Accuracy | 0     
2 | val_accuracy   | Accuracy | 0     
--------------------------------------------
33.2 M    Trainable params
0         Non-trainable params
33.2 M    Total params
132.742   Total estimated model params size (MB)
[NeMo W 2023-05-24 07:52:05 nemo_logging:349] /opt/conda/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1938: PossibleUserWarning: The number of training samples (11) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
      rank_zero_warn(
Epoch 0:  83%|██████████████▏  | 10/12 [00:13<00:02,  1.40s/it, loss=0, v_num=0]Adjusting learning rate of group 0 to 1.0000e-03.
Epoch 0:  92%|███████████████▌ | 11/12 [00:21<00:01,  1.91s/it, loss=0, v_num=0]
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 0: 100%|█| 12/12 [00:21<00:00,  1.80s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 1:  83%|▊| 10/12 [00:28<00:05,  2.88s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-03.
Epoch 1:  92%|▉| 11/12 [00:29<00:02,  2.65s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 1: 100%|█| 12/12 [00:29<00:00,  2.48s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 2:  83%|▊| 10/12 [00:36<00:07,  3.68s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-03.
Epoch 2:  92%|▉| 11/12 [00:37<00:03,  3.37s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 2: 100%|█| 12/12 [00:37<00:00,  3.15s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 3:  83%|▊| 10/12 [00:44<00:08,  4.49s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-03.
Epoch 3:  92%|▉| 11/12 [00:45<00:04,  4.10s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 3: 100%|█| 12/12 [00:45<00:00,  3.81s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 4:  83%|▊| 10/12 [00:53<00:10,  5.31s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 4:  92%|▉| 11/12 [00:53<00:04,  4.85s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 4: 100%|█| 12/12 [00:54<00:00,  4.50s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 5:  83%|▊| 10/12 [01:01<00:12,  6.11s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 5:  92%|▉| 11/12 [01:01<00:05,  5.58s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 5: 100%|█| 12/12 [01:02<00:00,  5.17s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 6:  83%|▊| 10/12 [01:09<00:13,  6.92s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 6:  92%|▉| 11/12 [01:09<00:06,  6.31s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 6: 100%|█| 12/12 [01:10<00:00,  5.84s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 7:  83%|▊| 10/12 [01:17<00:15,  7.73s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 7:  92%|▉| 11/12 [01:17<00:07,  7.05s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 7: 100%|█| 12/12 [01:18<00:00,  6.51s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 8:  83%|▊| 10/12 [01:25<00:17,  8.53s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 8:  92%|▉| 11/12 [01:25<00:07,  7.78s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 8: 100%|█| 12/12 [01:26<00:00,  7.19s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 9:  83%|▊| 10/12 [01:33<00:18,  9.33s/it, loss=0, v_num=0, val_loss=0.000,Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 9:  92%|▉| 11/12 [01:33<00:08,  8.51s/it, loss=0, v_num=0, val_loss=0.000,
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 9: 100%|█| 12/12 [01:34<00:00,  7.86s/it, loss=0, v_num=0, val_loss=0.000,
Epoch 10:  83%|▊| 10/12 [01:41<00:20, 10.14s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 10:  92%|▉| 11/12 [01:41<00:09,  9.24s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 10: 100%|█| 12/12 [01:42<00:00,  8.53s/it, loss=0, v_num=0, val_loss=0.000
Epoch 11:  83%|▊| 10/12 [01:49<00:21, 10.95s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 11:  92%|▉| 11/12 [01:49<00:09,  9.98s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 11: 100%|█| 12/12 [01:50<00:00,  9.20s/it, loss=0, v_num=0, val_loss=0.000
Epoch 12:  83%|▊| 10/12 [01:57<00:23, 11.75s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 12:  92%|▉| 11/12 [01:57<00:10, 10.71s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 12: 100%|█| 12/12 [01:58<00:00,  9.87s/it, loss=0, v_num=0, val_loss=0.000
Epoch 13:  83%|▊| 10/12 [02:05<00:25, 12.55s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-04.
Epoch 13:  92%|▉| 11/12 [02:05<00:11, 11.43s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 13: 100%|█| 12/12 [02:06<00:00, 10.53s/it, loss=0, v_num=0, val_loss=0.000
Epoch 14:  83%|▊| 10/12 [02:13<00:26, 13.35s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-05.
Epoch 14:  92%|▉| 11/12 [02:13<00:12, 12.16s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 14: 100%|█| 12/12 [02:14<00:00, 11.21s/it, loss=0, v_num=0, val_loss=0.000
Epoch 15:  83%|▊| 10/12 [02:21<00:28, 14.15s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-05.
Epoch 15:  92%|▉| 11/12 [02:21<00:12, 12.89s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 15: 100%|█| 12/12 [02:22<00:00, 11.87s/it, loss=0, v_num=0, val_loss=0.000
Epoch 16:  83%|▊| 10/12 [02:29<00:29, 14.95s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-05.
Epoch 16:  92%|▉| 11/12 [02:29<00:13, 13.62s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 16: 100%|█| 12/12 [02:30<00:00, 12.54s/it, loss=0, v_num=0, val_loss=0.000
Epoch 17:  83%|▊| 10/12 [02:37<00:31, 15.76s/it, loss=0, v_num=0, val_loss=0.000Adjusting learning rate of group 0 to 1.0000e-05.
Epoch 17:  92%|▉| 11/12 [02:37<00:14, 14.35s/it, loss=0, v_num=0, val_loss=0.000
Validation: 0it [00:00, ?it/s]
Validation DataLoader 0:   0%|                            | 0/1 [00:00<?, ?it/s]
Epoch 17: 100%|█| 12/12 [02:38<00:00, 13.21s/it, loss=0, v_num=0, val_loss=0.000
Epoch 17: 100%|█| 12/12 [02:41<00:00, 13.48s/it, loss=0, v_num=0, val_loss=0.000
Telemetry data couldn't be sent, but the command ran successfully.
[Error]: <urlopen error [Errno -2] Name or service not known>
Execution status: PASS
2023-05-24 07:54:52,582 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.

Can I check if I were to create multiple models like ‘throw’ and ‘snatch’ and ‘throw’ have 100 datasets that can be split to 70/30 and snatch have 50 data sets is split to 35/15. Can I run it together with the notebook or must I run one for throw, one for snatch and this will create 2 exports of rgb_resnet18_3.etlt files?

Facing an error when trying to export the RGB model

# Export the RGB model to encrypted ONNX model
!tao action_recognition export \
                   -e $SPECS_DIR/export_rgb.yaml \
                   -k $KEY \
                   model=$RESULTS_DIR/rgb_3d_ptm/rgb_only_model.tlt\
                   output_file=$RESULTS_DIR/export/rgb_resnet18_3.etlt

Error:

2023-05-29 09:39:15,346 [INFO] root: Registry: ['nvcr.io']
2023-05-29 09:39:15,400 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-pyt
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
[NeMo W 2023-05-29 09:39:28 nemo_logging:349] <frozen cv.action_recognition.scripts.export>:155: UserWarning: 
    'export_rgb.yaml' is validated against ConfigStore schema with the same name.
    This behavior is deprecated in Hydra 1.1 and will be removed in Hydra 1.2.
    See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/automatic_schema_matching for migration instructions.
Created a temporary directory at /tmp/tmp3sbl48t1
Writing /tmp/tmp3sbl48t1/_remote_module_non_scriptable.py
ResNet3d(
  (conv1): Conv3d(3, 64, kernel_size=(5, 7, 7), stride=(2, 2, 2), padding=(2, 3, 3), bias=False)
  (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool3d(kernel_size=(1, 3, 3), stride=2, padding=(0, 1, 1), dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
Telemetry data couldn't be sent, but the command ran successfully.
[Error]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2023-05-29 09:39:37,728 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.
Telemetry data couldn't be sent, but the command ran successfully.
[Error]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2023-05-29 09:39:37,728 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.

This error can be ignored. Please check if rgb_resnet18_3.etlt is generated. If yes, that means exporting is successful.

Here is the full log:

2023-05-31 04:36:45,995 [INFO] root: Registry: ['nvcr.io']
2023-05-31 04:36:46,048 [INFO] tlt.components.instance_handler.local_instance: Running command in container: nvcr.io/nvidia/tao/tao-toolkit:4.0.0-pyt
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
ANTLR runtime and generated code versions disagree: 4.8!=4.9.3
[NeMo W 2023-05-31 04:36:59 nemo_logging:349] <frozen cv.action_recognition.scripts.export>:155: UserWarning: 
    'export_rgb.yaml' is validated against ConfigStore schema with the same name.
    This behavior is deprecated in Hydra 1.1 and will be removed in Hydra 1.2.
    See https://hydra.cc/docs/next/upgrades/1.0_to_1.1/automatic_schema_matching for migration instructions.
Created a temporary directory at /tmp/tmp87lljxfr
Writing /tmp/tmp87lljxfr/_remote_module_non_scriptable.py
ResNet3d(
  (conv1): Conv3d(3, 64, kernel_size=(5, 7, 7), stride=(2, 2, 2), padding=(2, 3, 3), bias=False)
  (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool3d(kernel_size=(1, 3, 3), stride=2, padding=(0, 1, 1), dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(64, 64, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer2): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(64, 128, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(64, 128, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(128, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer3): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(128, 256, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(128, 256, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(256, 256, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (layer4): Sequential(
    (0): BasicBlock3d(
      (conv1): Conv3d(256, 512, kernel_size=(3, 3, 3), stride=(1, 2, 2), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv3d(256, 512, kernel_size=(1, 1, 1), stride=(1, 2, 2), bias=False)
        (1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (1): BasicBlock3d(
      (conv1): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn1): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv3d(512, 512, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), bias=False)
      (bn2): BatchNorm3d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (avg_pool): AdaptiveAvgPool3d(output_size=(1, 1, 1))
  (fc_cls): Linear(in_features=512, out_features=2, bias=True)
Error executing job with overrides: ['encryption_key=nvidia_tao', 'model=/results/rgb_3d_ptm/rgb_only_model.tlt', 'output_file=/results/export/rgb_resnet18_3.etlt']
An error occurred during Hydra's exception formatting:
AssertionError()
Traceback (most recent call last):
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 252, in run_and_report
    assert mdl is not None
AssertionError
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
  File "</opt/conda/lib/python3.8/site-packages/nvidia_tao_pytorch/cv/action_recognition/scripts/export.py>", line 3, in <module>
  File "<frozen cv.action_recognition.scripts.export>", line 155, in <module>
  File "/opt/NeMo/nemo/core/config/hydra_runner.py", line 104, in wrapper
    _run_hydra(
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 377, in _run_hydra
    run_and_report(
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 294, in run_and_report
    raise ex
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 211, in run_and_report
    return func()
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/utils.py", line 378, in <lambda>
    lambda: hydra.run(
  File "/opt/conda/lib/python3.8/site-packages/hydra/_internal/hydra.py", line 111, in run
    _ = ret.return_value
  File "/opt/conda/lib/python3.8/site-packages/hydra/core/utils.py", line 233, in return_value
    raise self._return_value
  File "/opt/conda/lib/python3.8/site-packages/hydra/core/utils.py", line 160, in run_job
    ret.return_value = task_function(task_cfg)
  File "<frozen cv.action_recognition.scripts.export>", line 33, in main
  File "<frozen cv.action_recognition.scripts.export>", line 73, in run_export
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/core/saving.py", line 161, in load_from_checkpoint
    model = cls._load_model_state(checkpoint, strict=strict, **kwargs)
  File "/opt/conda/lib/python3.8/site-packages/pytorch_lightning/core/saving.py", line 209, in _load_model_state
    keys = model.load_state_dict(checkpoint["state_dict"], strict=strict)
  File "/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1660, in load_state_dict
    raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for ActionRecognitionModel:
	size mismatch for model.fc_cls.weight: copying a param with shape torch.Size([9, 512]) from checkpoint, the shape in current model is torch.Size([2, 512]).
	size mismatch for model.fc_cls.bias: copying a param with shape torch.Size([9]) from checkpoint, the shape in current model is torch.Size([2]).
Telemetry data couldn't be sent, but the command ran successfully.
[Error]: <urlopen error [Errno -2] Name or service not known>
Execution status: FAIL
2023-05-31 04:37:08,536 [INFO] tlt.components.docker_handler.docker_handler: Stopping container.