金晟中, 张爱清. 原子级壳层厚度Ru@Pt核壳结构纳米粒子的制备与表征[J]. 应用化学, 35(2): 239-244
JIN Shengzhong, ZHANG Aiqing. Preparation and Characterization of Ru@Pt Core-Shell Nanoparticles with Shell in Atomic Thickness[J].
Chinese Journal of Applied Chemistry
, 35(2): 239-244
Permissions
本文属于开放获取期刊,遵循CCAL协议,使用请注明出处。
鉴于钌系催化剂的加氢高选择性和铂系催化剂的加氢高活性,本文将这两种金属以核壳结构的形式结合起来,采用简单的连续多元醇法,以RuCl
3
·
x
H
2
O和PtCl
2
为前驱体,乙二醇为还原剂,聚乙烯吡咯烷酮(PVP)为稳定剂的反应体系,成功地制备了壳层厚度约为1.5个Pt原子层的单分散Ru@Pt核壳结构纳米粒子。利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)等测试方法对其进行了表征,并初步探讨了有效控制其壳层厚度的因素以及壳层厚度与核、壳金属之间电子效应的关系。
图1
Ru@Pt核壳结构纳米粒子制备流程图
Fig.1
Schematic diagram of the preparation of Ru@Pt core-shell nanoparticles
2 结果与讨论
2.1 TEM测试
图2
所示为制备样品的TEM照片(2
A
)、粒径分布图(2
B
)、局部放大图(2
C
)及HR-TEM照片(2
D
)。 由
图2
A
和2
B
可以看出,被PVP包裹的纳米粒子基本为球形,且分布均匀,平均粒径约为3.57 nm。 由于粒子很小,HR-TEM镜头里的漂移现象较为严重,难以看出明显的核壳结构,故将局部颗粒放大如
图2
C
所示。 可以看到中间颜色较深的为Ru核,外层颜色较浅的为Pt壳,利用粒径测量软件测得其内核直径约为2.49 nm,外壳厚度约为0.55 nm,即约为1.5个Pt原子层厚度。 说明通过简单的连续多元醇法制备出的Ru@Pt纳米粒子确实是核壳结构。
图2
D
显示了壳层金属Pt明显的{111}晶面,表明其相比其它晶面的铂纳米粒子具有更加优异的催化选择性,且由于存在更多的活性位点,因此具有更高的催化活性
[
15
,
16
,
17
]
。
图2
Ru@Pt核壳结构纳米粒子的TEM照片(
A
)、粒径分布图(
B
)、局部放大图(
C
)及HR-TEM照片(
D
)
Fig.2
TEM image(
A
), size histograms(
B
), locality amplification(
C
) and HR-TEM image(
D
) of Ru@Pt core-shell nanoparticles
图3
Ru@Pt核壳结构纳米粒子的X射线衍射图
Fig.3
XRD pattern of Ru@Pt core-shell nanoparticles
2.3 XPS测试
为了分析样品表面元素构成及化学状态,对样品进行了XPS测试,结果如
图4
所示。 从图中不仅可以清晰地观察到外壳金属铂的Pt4
f
光电子峰,还观察到了分别对应于Ru3
d
、Ru3
p
的光电子峰,这是由于Pt层厚度极小,X射线可以透过Pt层激发出内层金属Ru的电子,这也与HR-TEM的结果相吻合,也间接证明了所制备的纳米粒子为核壳结构。 由
图4
A
和4
B
可知,Ru3
d
5/2
、Ru3
p
1/2
、Ru3
p
3/2
的电子结合能分别为279.45、484.30和462.60 eV,与零价Ru的标准光电子能谱
[
19
]
一致,由此证明内核钌确实是由零价态的Ru原子组成,但与Ru(0)的标准结合能相比,有0.55~0.70 eV的增加;
图4
C中Pt4
f
5/2
和Pt4
f
7/2
的电子结合能分别为74.10和70.30 eV,与零价Pt的标准光电子能谱对比,可以证明外壳铂是由零价态的Pt原子组成,而与Pt(0)的标准结合能相比,有0.15~0.60 eV的减少。 综合上述样品中Ru(0)、Pt(0)结合能的变化,分析可能是由于内核金属Ru与外壳金属Pt相互产生了电子效应
[
20
,
21
]
,导致Ru和Pt的电子云密度发生改变,直观表现为二者结合能的反向变化。 以上结果表明,金属钌确实被铂包覆形成了Ru@Pt核壳结构纳米粒子。
表2
还原PtCl
2
温度对Ru@Pt纳米粒子尺寸、形貌及壳层厚度的影响
Table 2
The influence of reduction temperature of PtCl
2
on the particles size,shapes and shell thickness of Ru@Pt nanoparticles
Reduction temperature/℃
Particles size/nm
Shapes
Shell thickness/nm
120
3.37
sphere
No core-shell structure
125
3.54
sphere
0.57
130
3.57
sphere
0.55
135
3.71
sphere
0.63
140
3.62
sphere/irregular
No core-shell structure
145
3.69
irregular
No core-shell structure
表2
还原PtCl
2
温度对Ru@Pt纳米粒子尺寸、形貌及壳层厚度的影响
Table 2
The influence of reduction temperature of PtCl
2
on the particles size,shapes and shell thickness of Ru@Pt nanoparticles
ZHANG
Xin
,
CHU
Chengcan
,
HUANG
Kaihua
,
et al
.
Preparation of Au@Pt Core-Shell Nanoparticles Using Polyelectrolyte Multilayers as Nanoreactors
[J].
Chinese J Appl Chem,
2012
,
29
(
12
):
1433
-
1437
(in Chinese).
张信
,
储诚灿
,
黄凯华
,
等
.
以聚电解质多层膜为纳米反应器制备Au@Pt 核壳纳米粒子
[J].
应用化学,
2012
,
29
(
12
):
1433
-
1437
.
[本文引用:1]
TANG
Xuehong
,
WU
Ying
,
ZHANG
Yu
,
et al
.
Preparation of Au Core/Ag Shell Nanoparticles by Photocatalysis Reduction Method and Electrocatalysis of Its Modified Electrode
[J].
Chinese J Appl Chem,
2009
,
26
(
4
):
471
-
474
(in Chinese).
唐学红
,
吴莹
,
张玉
,
等
.
光催化还原制备Au/Ag核壳结构纳米粒子及其修饰电极的电催化性能
[J].
应用化学,
2009
,
26
(
4
):
471
-
474
.
[本文引用:1]
B. Gawande
M
,
Goswami A, Asefa T
,
et al
.
Core-shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis
[J].
Chem Soc Rev,
2015
,
44
(
21
):
7540
-
7590
.
[本文引用:1]
Wei Z
D
,
Feng Y
C
,
Li
L
,
et al
.
Electrochemically Synthesized Cu/Pt Core-Shell Catalysts on a Porous Carbon Electrode for Polymer Electrolyte Membrane Fuel Cells
[J].
J Power Sources,
2008
,
180
(
1
):
84
-
91
.
[本文引用:1]
Xu
Q
,
Yan J
M
,
Zhang X
B
,
et al
.
One-Step Seeding Growth of Magnetically Recyclable Au@Co Core-Shell Nanoparticles: Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane
[J].
J Am Chem Soc,
2010
,
132
(
15
):
5326
-
5327
.
[本文引用:1]
Sieben J
M
,
Comignani
V
,
E. Alvarez A
,
et al
.
Synthesis and Characterization of Cu Core Pt-Ru Shell Nanoparticles for the Electro-Oxidation oF Alcohols
[J].
Int J Hydrogen Energy,
2014
,
39
(
16
):
8667
-
8674
.
[本文引用:1]
Liu Z
Y
,
Sun H
J
,
Wang D
B
,
et al
.
The Modifiable Character of a Novel Ru-Fe-B/ZrO
2
Catalyst for Benzene Selective Hydrogenation to Cyclohexene
[J].
Chinese J Chem,
2010
,
28
(
10
):
1927
-
1934
.
[本文引用:1]
Cui X
J
,
Surkus A
E
,
Junge
K
,
et al
.
Highly Selective Hydrogenation of Arenes Using Nanostructured Ruthenium Catalysts Modified with a Carbon Nitrogen Matrix
[J].
Nat Commun,
2016
,
7
:
11326
-
11333
.
[本文引用:1]
He S
C
,
Fei Z
Y
,
Li
L
,
et al
.
Synthesis and Catalytic Activity of M@SiO
2
(M=Ag, Au, and Pt) Nanostructures via “Core to Shell” and “Shell then Core” Approaches
[J].
Chinese J Catal,
2013
,
34
(
11
):
2098
-
2109
.
[本文引用:1]
Yang P
W
,
Liu Y
T
,
Hsu S
P
,
et al
.
Core shell Nanocrystallite Growth via Heterogeneous Interface Manipulation
[J].
Cryst Eng Commun,
2015
,
17
(
45
):
8623
-
8631
.
[本文引用:1]
Wu J C
S
,
Chen W
C
.
A Novel BN Supported Bi-Metal Catalyst for Selective Hydrogenation of Crotonaldehyde
[J].
Appl Catal A,
2005
,
289
(
2
):
179
-
185
.
[本文引用:1]
Beier M
J
,
Andanson J
M
,
Mallat
T
,
et al
.
Ionic Liquid-supported Pt Nanoparticles as Catalysts for Enantioselective Hydrogenation
[J].
ACS Catal,
2012
,
2
(
3
):
337
-
340
.
[本文引用:1]
Alayoglu
S
,
Eichhorn
B
.
Rh-Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles
[J].
J Am Chem Soc,
2008
,
130
(
51
):
17479
-
17486
.
[本文引用:1]
GU
Qiang
,
ZHANG
Kai
,
HU
Chunling
,
et al
.
The Breaking Process of Core-Shell Emulsion Affected by Electrolytes
[J].
Chinese J Appl Chem,
2006
,
23
(
2
):
122
-
125
(in Chinese).
顾强
,
张恺
,
胡春玲
,
等
.
核壳乳液在电解质作用下的破乳过程
[J].
应用化学,
2006
,
23
(
2
):
122
-
125
.
[本文引用:1]
Narayanan
R
,
A. El-Sayed M
.
Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability
[J].
J Phys Chem B,
2005
,
109
(
26
):
12663
-
12676
.
[本文引用:1]
Lia
C
,
Yamauchi
Y
.
Facile Solution Synthesis of Ag@Pt Core-Shell Nanoparticles with Dendritic Pt Shells
[J].
Phys Chem Chem Phys,
2013
,
15
(
10
):
3490
-
3496
.
[本文引用:1]
M. Bratlie
K
,
Lee H, Komvopoulos K
,
et al
.
Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity
[J].
Nano Lett,
2007
,
7
(
10
):
3097
-
3101
.
[本文引用:1]
Liu Y
T
,
Yuan Q
B
,
Duan D
H
,
et al
.
Electrochemical Activity and Stability of Core-Shell Fe
2
O
3
/Pt Nanoparticles for Methanol Oxidation
[J].
J Power Sources,
2013
,
243
(
6
):
622
-
629
.
[本文引用:1]
Moulder J
F
,
Stickle W
F
,
Sobol P
E
,
et al
.
Handbook of X-ray Photo-electron Spectroscopy
[M].
Perkin-Elmer Corporation: Minnesota,
1992
:
186
-
187
.
[本文引用:1]
Nan H
X
,
Tian X
L
,
Luo J
M
,
et al
.
A Core Shell Pd
1
Ru
1
Ni
2
@Pt/C Catalyst with a Ternary Alloy Core and Pt Monolayer: Enhanced Activity and Stability Towards the Oxygen Reduction Reaction by the Addition of Ni
[J].
J Mater Chem A,
2016
,
4
(
3
):
847
-
855
.
[本文引用:1]
Alayoglu
S
,
Nilekar A
U
,
Mavrikakis
M
,
et al
.
Ru Pt Core Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen
[J].
Nat Mater,
2008
,
7
(
4
):
333
-
338
.
[本文引用:1]
Atienza D
O
,
Allison T
C
,
Tong Y Y C
.
Spatially Resolved Electronic Alterations As Seen by in Situ
195
Pt and
13
CO NMR in Ru@Pt and Au@Pt Core-Shell Nanoparticles
[J].
J Phys Chem C,
2012
,
116
(
50
):
26480
-
26486
.
[本文引用:1]
ZHANG
Xin
,
CHU
Chengcan
,
HUANG
Kaihua
,
et al
.
Preparation of Au@Pt Core-Shell Nanoparticles Using Polyelectrolyte Multilayers as Nanoreactors
[J].
Chinese J Appl Chem,
2012
,
29
(
12
):
1433
-
1437
(in Chinese).
张信
,
储诚灿
,
黄凯华
,
等
.
以聚电解质多层膜为纳米反应器制备Au@Pt 核壳纳米粒子
[J].
应用化学,
2012
,
29
(
12
):
1433
-
1437
.
TANG
Xuehong
,
WU
Ying
,
ZHANG
Yu
,
et al
.
Preparation of Au Core/Ag Shell Nanoparticles by Photocatalysis Reduction Method and Electrocatalysis of Its Modified Electrode
[J].
Chinese J Appl Chem,
2009
,
26
(
4
):
471
-
474
(in Chinese).
唐学红
,
吴莹
,
张玉
,
等
.
光催化还原制备Au/Ag核壳结构纳米粒子及其修饰电极的电催化性能
[J].
应用化学,
2009
,
26
(
4
):
471
-
474
.