冯雍, 陶贞, 高全洲, 邓浩俊, 姚玲, 李银花, 丁健, 王振刚, 黎坤, 徐鹏. 雅砻江下游干热河谷表土化学风化及其控制因子[J]. 第四纪研究, 2020, 40(4): 1083-1094. doi: 10.11928/j.issn.1001-7410.2020.04.21
引用本文:
冯雍, 陶贞, 高全洲, 邓浩俊, 姚玲, 李银花, 丁健, 王振刚, 黎坤, 徐鹏. 雅砻江下游干热河谷表土化学风化及其控制因子[J]. 第四纪研究, 2020, 40(4): 1083-1094.
doi:
10.11928/j.issn.1001-7410.2020.04.21
冯雍, 陶贞, 高全洲, 邓浩俊, 姚玲, 李银花, 丁健, 王振刚, 黎坤, 徐鹏. 雅砻江下游干热河谷表土化学风化及其控制因子[J]. 第四纪研究, 2020, 40(4): 1083-1094. doi: 10.11928/j.issn.1001-7410.2020.04.21
Feng Yong, Tao Zhen, Gao Quanzhou, Deng Haojun, Yao Ling, Li Yinhua, Ding Jian, Wang Zhengang, Li Kun, Xu Peng. The chemical weathering and its controlling factors of topsoil in the hot-dry valley of the lower Yalongjiang River[J]. Quaternary Sciences, 2020, 40(4): 1083-1094. doi: 10.11928/j.issn.1001-7410.2020.04.21
Citation:
Feng Yong, Tao Zhen, Gao Quanzhou, Deng Haojun, Yao Ling, Li Yinhua, Ding Jian, Wang Zhengang, Li Kun, Xu Peng. The chemical weathering and its controlling factors of topsoil in the hot-dry valley of the lower Yalongjiang River[J].
Quaternary Sciences
, 2020, 40(4): 1083-1094.
doi:
10.11928/j.issn.1001-7410.2020.04.21
化学风化是地表岩石矿物向土壤释放营养元素同时形成土壤粘粒组分的地球化学过程,这一过程使土壤具有生态环境功能。本文选择采集青藏高原东南缘的雅砻江下游不同地貌部位和植物群落的表土样品并分析其粒度组成和地球化学特征。结果表明:研究区表土粒度组成以粉砂为主(46.68%),其次是砂粒(34.05%)和粘粒(19.28%);元素组成以Si、Al和Fe为主;K、P和Si相对于上陆壳亏损,与区内沉积岩为主的岩石分布特征一致。研究区表土粘粒含量和化学蚀变指数(CIA)存在明显的空间差异:海拔 < 1300 m、坡度较大的南部谷坡地表土粘粒平均含量为6.51%,CIA平均为65,处于脱Ca、Na的中等风化阶段早期;海拔>2400 m、坡度平缓的西部坡地和宽谷地表土粘粒含量达39.21%,CIA平均达86,风化程度较高。母岩、海拔、坡度和土壤总氮含量对表土CIA值的贡献依次是57.34%、23.46%、10.33%和6.87%。显然,母岩性质是控制研究区表土化学风化过程的主要因素,地貌条件(海拔和坡度)是驱动化学风化过程最重要的外部因素,且海拔高度的影响大于坡度;生物作用对CIA值有一定的贡献。本研究可为深入探讨干热河谷地区土壤生物地球化学过程提供基础数据。
化学蚀变指数
Abstract:
Rocks/minerals chemical weathering is a superficial geochemical process in which releasing nutrient elements to soil and forming clay minerals in the soil, and simultaneously developing eco-environmental functions of soil. In this study, we selected 10 community plots, located respectively in the different slopes and mountain rift basins (26°32'~34°05'N, 96°52'~102°48'E) with elevation ranging from 1000 m to 3000 m in the lower reaches of the Yalongjiang River on the southeastern Qinghai-Tibetan Plateau, including grassland, savanna, mixed woodland,
Leucaena leucocephala
woodland, coniferous and broad-leaved mixed forest land,
Pinus yunnanensis
woodland, wide-valley grassland, corn field, mango orchard and apple orchard,
etc
., and collected its topsoil samples, respectively. The grain size composition and mineral elemental composition were analyzed, the proxies of grain size and geochemical parameters and the methods of correlation analysis and ridge regression analysis were employed. The objectives of this study were to explore the evolution trend of the topsoil chemical weathering; to quantify the contributions of major controlling factors to the topsoil chemical weathering; and to evaluate the carbon sink potential of the topsoil chemical weathering in the hot-dry valleys of the southwestern China. The results show that the spatial differences of the topsoil chemical weathering intensity resulted in significant spatial heterogeneity of the topsoil grain size composition in the study area. In the south of the study area with lower altitude (below 1300 m) and steeper slope, including grassland, savanna, mixed woodland,
Leucaena leucocephala
woodland, corn field and mango orchard, the grain size of the topsoil occurs more coarse (mean grain size ranging from 3.94 φ to 6.35 φ) and merely 6.51% of clay content. The topsoil is characterized by relatively weak eco-environmental function. However, in the western study area with higher elevation (above 2400 m) and gentle slope, including wide-valley grassland,
Pinus yunnanensis
woodland, coniferous and broad-leaved mixed forest land and apple orchard, the grain size of the topsoil exists more finer (mean grain size ranging from 7.91 φ to 8.57 φ) and higher clay content (39.21%). Hence, the topsoil is characterized by stronger eco-environmental function.
Comparing with the upper continental crust, terrestrial shale and Chinese soil geochemical baseline values, the content of element K, P, and Si is lower, and the content of element Ti, Mn, and Fe is higher in the topsoil of the study area. The contents of mobile elements (Mg, Ca, and Na) varies widely in the topsoil among the different communities, which is consistent with the rocks features of widespread distribution of carbonate rocks, sand shales and mudstones, and sparse silicate rocks as well as the intensive slope erosion in the study area. For the purpose of ensuring the yield and quality of crops and the soil resources in the study area, it is necessary to rational application of K and P-containing fertilizers and organic fertilizers, and at the same time strengthen field management to reduce the pollution of rainwater runoff carrying nutrients flushing into the cascade reservoirs in the lower Yalongjiang River.
The spatial variation of the Chemical Index of Alteration (CIA) and the A-CN-K triangle diagrams show that the topsoil in the western study area is undergoing a moderate-intensity weathering process (the averaged CIA=86), and is in the stage of desilicating and ferrallitic weathering process. The chemical weathering of the topsoil on the steeper slopes in the southern study area is in the lower to medium development stage (the averaged CIA=65), and is in the leaching stage of element Ca and Na. Hence, the topsoil chemical weathering process in the study area may still consume atmospheric CO
2
and serve as carbon sinks. The Ridge regression analysis suggested that the spatial differences of the topsoil chemical weathering intensity in the study area were mainly predominated by parent rocks, altitude, slope, and soil TN content, which contribution to the topsoil CIA value is 57.34%, 23.46%, 10.33%, and 6.87%, respectively. Obviously, the nature of the parent rocks is the major factor controlling the topsoil chemical weathering process in the study area. The geomorphological factors (elevation and slope) are the main external factors driving the chemical weathering process, and the impact of the elevation on the CIA value is greater than that of the slope; The biological action contribute limitedly to the CIA value too. This study can provide basic data for deeply discussing soil biogeochemical processes in hot-dry valleys.
Key words:
grain size
elemental composition
chemical weathering
chemical index of alteration
hot-dry valley
朱永官, 李刚, 张甘霖, 等.土壤安全:从地球关键带到生态系统服务[J].地理学报, 2015, 70 (12):1859-1869.
http://d.old.wanfangdata.com.cn/Periodical/nygcxb201207023
Zhu Yongguan, Li Gang, Zhang Ganlin, et al. Soil security:From Earth's critical zone to ecosystem services[J]. Acta Geographica Sinica, 2015, 70 (12):1859-1869.
http://d.old.wanfangdata.com.cn/Periodical/nygcxb201207023
李楠, 郝青振, 张绪教, 等.东秦岭黄土物源的常量元素和微量元素地球化学证据[J].第四纪研究, 2016, 36 (2):332-346.
http://www.dsjyj.com.cn/CN/Y2016/V36/I2/332
Li Nan, Hao Qingzhen, Zhang Xujiao, et al. Geochemical evidence for the provenance of loess deposits in the eastern Qinling Mountains, Central China[J]. Quaternary Sciences, 2016, 36 (2):332-346.
http://www.dsjyj.com.cn/CN/Y2016/V36/I2/332
毛沛妮, 庞奖励, 黄春长, 等.汉江上游黄土常量元素地球化学特征及区域对比[J].地理学报, 2017, 72 (2):279-291.
http://d.old.wanfangdata.com.cn/Periodical/dlxb201702008
Mao Peini, Pang Jiangli, Huang Chunchang, et al. Chemical weathering characteristics and regional comparative study of the loess deposits in the upper Hanjiang River[J]. Acta Geographica Sinica, 2017, 72 (2):279-291.
http://d.old.wanfangdata.com.cn/Periodical/dlxb201702008
聂军胜, 李曼.柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J].第四纪研究, 2017, 37 (5):1017-1026.
http://www.dsjyj.com.cn/CN/Y2017/V37/I5/1017
Nie Junsheng, Li Man. A grain size study on Late Miocene Huaitoutala section, NE Qaidam Basin, and implications for Asian monsoon evolution[J]. Quaternary Sciences, 2017, 37 (5):1017-1026.
http://www.dsjyj.com.cn/CN/Y2017/V37/I5/1017
魏东岚, 沈俊杰, 李永化.红色风化壳地球化学特征及对古气候演变的响应——以辽南石槽剖面为例[J].地理科学, 2018, 38 (2):307-313.
http://www.cnki.com.cn/Article/CJFDTotal-DLKX201802018.htm
Wei Donglan, Shen Junjie, Li Yonghua. Geochemical characteristics of red weathering crust from Shicao profile in southern Liaoning Province and the response of paleoclimate evolution[J]. Scientia Geographica Sinica, 2018, 38 (2):307-313.
http://www.cnki.com.cn/Article/CJFDTotal-DLKX201802018.htm
乔彦松, 赵志中, 王燕, 等.川西甘孜黄土-古土壤序列的地球化学演化特征及其古气候意义[J].科学通报, 2010, 55 (3):255-260. doi:
10.1360/csb2010-55-3-255
Qiao Yansong, Zhao Zhizhong, Wang Yan, et al. Variations of geochemical compositions and the paleoclimatic significance of loess-soil sequence from Ganzi County of western Sichuan Province, China[J]. Chinese Science Bulletin, 2010, 55 (3):255-260. doi:
10.1360/csb2010-55-3-255
郭飞, 王婷, 刘宇明, 等.临夏黄土记录的26万年来季风快速变化[J].第四纪研究, 2019, 39 (3):557-564.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/557
Guo Fei, Wang Ting, Liu Yuming, et al. Rapid Asian monsoon changes recorded by loess depositions in Linxia since 260 ka B.P.[J]. Quaternary Sciences, 2019, 39 (3):557-564.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/557
司月君, 牛东风, 李保生, 等.广东西樵剖面主量元素记录的全新世气候突变[J].第四纪研究, 2019, 39 (3):629-641.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/629
Si Yuejun, Niu Dongfeng, Li Baosheng, et al. Holocene climate change from major elements in Xiqiaoshan of Guangdong Province, China[J]. Quaternary Sciences, 2019, 39 (3):629-641.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/629
杨一博, 方小敏, Galy Albert, 等.柴达木盆地西部第四纪气候变化和流域风化[J].第四纪研究, 2018, 38 (1):76-85.
http://www.dsjyj.com.cn/CN/Y2018/V38/I1/76
Yang Yibo, Fang Xiaomin, Galy Albert, et al. Quaternary climate change and catchment weathering in the western Qaidam Basin[J]. Quaternary Sciences, 2018, 38 (1):76-85.
http://www.dsjyj.com.cn/CN/Y2018/V38/I1/76
庞奖励, 黄春长, 张旭, 等.白鹿原人工果树林地土壤和农耕地土壤微形态对比研究[J].土壤学报, 2007, 44 (5):793-800.
http://d.old.wanfangdata.com.cn/Periodical/trxb200705004
Pang Jiangli, Huang Chunchang, Zhang Xu, et al. Micromorphological features of the cultivated soil and anthropogenic forest soil at Bailuyuan site, Shaanxi Province[J]. Acta Pedological Sinica, 2007, 44 (5):793-800.
http://d.old.wanfangdata.com.cn/Periodical/trxb200705004
杨忠, 熊东红, 周红艺, 等.干热河谷不同岩土组成坡地的降水入渗与林木生长[J].中国科学(E辑:技术科学), 2003, 33(增刊):85-93.
http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce2003z1010
Yang Zhong, Xiong Donghong, Zhou Hongyi, et al. Dry hot valley of different rock and soil slope of precipitation infiltration and tree growth[J]. Science in China(Series E:Technological Sciences), 2003, 33(Suppl.):85-93.
http://d.old.wanfangdata.com.cn/Periodical/zgkx-ce2003z1010
刘伦辉.横断山区干旱河谷植被类型[J].山地学报, 1989, 7 (3):175-182.
http://www.cqvip.com/Main/Detail.aspx?id=120163
Liu Lunhui. Vegetation types of the arid valleys in the Hengduan Mountainous region[J]. Mountain Research, 1989, 7 (3):175-182.
http://www.cqvip.com/Main/Detail.aspx?id=120163
丁文荣.横断山区干旱河谷气候变化趋势研究[J].生态与农村环境学报, 2013, 29 (6):681-687. doi:
10.3969/j.issn.1673-4831.2013.06.001
Ding Wenrong. Trend of the climate changes in dry valleys of Hengduan Mountains, China[J]. Journal of Ecology and Rural Environment, 2013, 29 (6):681-687. doi:
10.3969/j.issn.1673-4831.2013.06.001
闻学泽.四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J].地震地质, 2000, 22 (3):239-249. doi:
10.3969/j.issn.0253-4967.2000.03.005
Wen Xueze. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone, Western Sichuan[J]. Seismology and Geology, 2000, 22 (3):239-249. doi:
10.3969/j.issn.0253-4967.2000.03.005
陈诗越, 方小敏, 王苏民.川西高原甘孜黄土与印度季风演化关系[J].海洋地质与第四纪地质, 2002, 22 (3):41-45.
http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203006
Chen Shiyue, Fang Xiaomin, Wang Sumin. Relation between the loess stratigraphy on the eastern Tibetan Plateau and Indian monsoon[J]. Marine Geology & Quaternary Geology, 2002, 22 (3):41-45.
http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200203006
陈骏, 安芷生, 刘连文, 等.最近2.5 Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J].中国科学:地球科学, 2001, 31 (2):136-145.
http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200102007
Chen Jun, An Zhisheng, Liu Lianwen, et al. Variations of chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland[J]. Science China:Earth Sciences, 2001, 31 (2):136-145.
http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200102007
McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101 (2):295-303.
http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226531170/
王运生, 李永昭, 向芳.川西高原甘孜黄土的成因[J].地质力学学报, 2003, 9 (1):91-96. doi:
10.3969/j.issn.1006-6616.2003.01.012
Wang Yunsheng, Li Yongzhao, Xiang Fang. The Ganzi loess origin in the west Sichuan Plateau[J]. Journal of Geomechanics, 2003, 9 (1):91-96. doi:
10.3969/j.issn.1006-6616.2003.01.012
雷祥义.秦岭黄土的粒度分析及其成因初步探讨[J].地质学报, 1998, 72 (2):178-188. doi:
10.3321/j.issn:0001-5717.1998.02.010
Lei Xiangyi. Grain-size analysis and genesis of loess in the Qinling Mountains[J]. Acta Geologica Sinica, 1998, 72 (2):178-188. doi:
10.3321/j.issn:0001-5717.1998.02.010
张龙吴, 张虎才, 常凤琴, 等.云南异龙湖沉积物粒度空间变化特征及其环境指示意义[J].第四纪研究, 2019, 39 (5):1159-1170.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1159
Zhang Longwu, Zhang Hucai, Chang Fenqin, et al. Spatial variation characteristics of sediment size and its environmental indication significance in Lake Yilong, Yunnan Province[J]. Quaternary Sciences, 2019, 39 (5):1159-1170.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1159
王婷, 龙宜澧, 刘星星, 等.渭河盆地末次冰盛期以来沉积环境变化研究[J].第四纪研究, 2019, 39 (3):579-588.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/579
Wang Ting, Long Yili, Liu Xingxing, et al. Sedimentary environment evolutions in the Weihe Basin since Last Glacial Maximum[J]. Quaternary Sciences, 2019, 39 (3):579-588.
http://www.dsjyj.com.cn/CN/Y2019/V39/I3/579
傅开道, 杨文辉, 苏斌, 等.流域环境变化的河流沉积物粒度响应——澜沧江案例[J].地理科学进展, 2015, 34 (9):1148-1155.
http://d.wanfangdata.com.cn/periodical/dlkxjz201509007
Fu Kaidao, Yang Wenhui, Su Bin, et al. Response of river sediments to basin environmental changes:A case study of the Lancang River[J]. Progress in Geography, 2015, 34 (9):1148-1155.
http://d.wanfangdata.com.cn/periodical/dlkxjz201509007
张建辉, 李勇, 杨忠.金沙江干热河谷区人工林生长与土壤母质-母岩的关系[J].山地学报, 2001, 19 (3):231-236. doi:
10.3969/j.issn.1008-2786.2001.03.007
Zhang Jianhui, Li Yong, Yang Zhong. Plantation growth to soil parent material/rock in the dry-hot valleys of the Jinsha River[J]. Journal of Mountain Science, 2001, 19 (3):231-236. doi:
10.3969/j.issn.1008-2786.2001.03.007
胡萃.川西山地坡面不同土地利用方式下土壤侵蚀研究[D].成都: 四川农业大学硕士学位论文, 2006: 17-30.
http://d.wanfangdata.com.cn/thesis/Y959300
Hu Cui. The Sloping Land Soil Erosion under Different Land Use in the West of Sichuan[D]. Chengdu: The Master's Thesis of Sichuan Agricultural University, 2006: 17-30.
申聪颖, 赵兰坡, 刘杭, 等.不同母质发育的东北黑土的粘粒矿物组成研究[J].矿物学报, 2013, 33 (3):382-388.
http://d.old.wanfangdata.com.cn/Periodical/kwxb201303016
Shen Congying, Zhao Lanpo, Liu Hang, et al. A study on clay minerals from different parent material of black soil[J]. Acta Mineralogica Sinica, 2013, 33 (3):382-388.
http://d.old.wanfangdata.com.cn/Periodical/kwxb201303016
王学求, 周建, 徐善法, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43 (5):1469-1480.
http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001
Wang Xueqiu, Zhou Jian, Xu Shanfa, et al. China soil geochemical baselines networks:Data characteristics[J]. Geology in China, 2016, 43 (5):1469~1480
http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001
张德, 龙会英, 金杰, 等.豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响[J].草业学报, 2018, 27 (10):15-22. doi:
10.11686/cyxb2017475
Zhang De, Long Huiying, Jin Jie, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression[J]. Acta Prataculturae Sinica, 2018, 27 (10):15-22. doi:
10.11686/cyxb2017475
冯连君, 储雪蕾, 张启锐, 等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘, 2003, 10 (4):539-544. doi:
10.3321/j.issn:1005-2321.2003.04.019
Feng Lianjun, Chu Xuelei, Zhang Qirui, et al. CIA(chemical index of alteration)and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers, 2003, 10 (4):539-544. doi:
10.3321/j.issn:1005-2321.2003.04.019
琚琛琪, 牛东风, 李保生, 等.广东西樵山MIS 5a网纹红土常量元素分布及其气候意义[J].第四纪研究, 2019, 39 (5):1083-1091.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1083
Ju Chenqi, Niu Dongfeng, Li Baosheng, et al. Reticulate laterite constant element distribution and its significance in MIS 5a, Xiqiaoshan, Guangdong Province[J]. Quaternary Sciences, 2019, 39 (5):1083-1091.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1083
蒋浩, 徐志方, 赵童, 等.青藏高原流域岩石风化速率及其控制机制——以贡嘎山地区典型地质背景小流域研究为例[J].第四纪研究, 2018, 38 (1):278-286.
http://www.dsjyj.com.cn/CN/Y2018/V38/I1/278
Jiang Hao, Xu Zhifang, Zhao Tong, et al. The weathering rates and controlling factors of the Tibetan Plateau:A case study of small catchments of typical lithology in Gongga Mountainous area[J]. Quaternary Sciences, 2018, 38 (1):278-286.
http://www.dsjyj.com.cn/CN/Y2018/V38/I1/278
汪苗, 鹿化煜.雷州半岛玛珥湖区玄武岩的年代、地球化学特征及其意义[J].第四纪研究, 2019, 39 (5):1071-1082.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1071
Wang Miao, Lu Huayu. Age, geochemical composition and their paleoclimatic implications of the basalt in Leizhou Peninsula, Southern China[J]. Quaternary Sciences, 2019, 39 (5):1071-1082.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1071
黄颖, 朱丽东, 张晓, 等.庐山北麓JL红土剖面粉砂粒级元素地球化学特征及其物源意义[J].第四纪研究, 2019, 39 (5):1092-1102.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1092
Huang Ying, Zhu Lidong, Zhang Xiao, et al. Geochemical characteristics and their provenance implications of the silt fraction from JL red earth section in Lushan region, Jiujiang, South China[J]. Quaternary Sciences, 2019, 39 (5):1092-1102.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1092
王小芳, 邴海健, 吴艳宏, 等.小冰期结束以来贡嘎山海螺沟冰川退缩区土壤化学风化与发育过程[J].第四纪研究, 2019, 39 (5):1191-1202.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1191
Wang Xiaofang, Bing Haijian, Wu Yanhong, et al. Chemical weathering and development of soil in the retreat area of Hailuogou glacier since the end of the Little Ice Age[J]. Quaternary Sciences, 2019, 39 (5):1191-1202.
http://www.dsjyj.com.cn/CN/Y2019/V39/I5/1191
戴开结, 沈有信, 周文君, 等.云南松根际pH与不同磷水平下云南松幼苗根际pH变化[J].西北植物学报, 2005, 25 (12):2490-2494. doi:
10.3321/j.issn:1000-4025.2005.12.021
Dai Kaijie, Shen Youxin, Zhou Wenjun, et al. Rhizosphere pH of
Pinus yunnanensis
Franch. and rhizosphere pH of
P.yunnanensis
seedlings at different phosphorous rates[J]. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25 (12):2490-2494. doi:
10.3321/j.issn:1000-4025.2005.12.021
Figure 1.
Vegetation types and distribution of sampling sites in the study area. Vegetation data from reference[
27
]
Figure 2.
Frequency distribution and cumulative frequency distribution curve of soil particles.
Figure 3.
Chemical composition and loss on ignition(LOI)of topsoil
Figure 4.
UCC standardized curve of the average content of major elements in topsoil
Figure 5.
Comparison of weathering intensity indexes
Figure 6.
A-CN-K triangular diagram
Figure 7.
Relationships between CIA value and environmental factors
Figure 8.
Relationship between measured CIA and calculated CIA