添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
邓齐波, 贾涵杏, 杨波, 齐正磐, 张哲绎, 阿拉木斯, 胡宁. 固液界面的力−电−化学耦合及在电催化体系中的应用. 力学进展, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 引用本文: 邓齐波, 贾涵杏, 杨波, 齐正磐, 张哲绎, 阿拉木斯, 胡宁. 固液界面的力−电−化学耦合及在电催化体系中的应用. 力学进展, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 Deng Q B, Jia H X, Yang B, Qi Z P, Zhang Z Y, Lee A, Hu N. The electro-chemo-mechanical coupling at the solid-liquid interfaces and its applications to electrocatalysis . Advances in Mechanics, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 Citation: Deng Q B, Jia H X, Yang B, Qi Z P, Zhang Z Y, Lee A, Hu N. The electro-chemo-mechanical coupling at the solid-liquid interfaces and its applications to electrocatalysis . Advances in Mechanics , 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 邓齐波, 贾涵杏, 杨波, 齐正磐, 张哲绎, 阿拉木斯, 胡宁. 固液界面的力−电−化学耦合及在电催化体系中的应用. 力学进展, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 引用本文: 邓齐波, 贾涵杏, 杨波, 齐正磐, 张哲绎, 阿拉木斯, 胡宁. 固液界面的力−电−化学耦合及在电催化体系中的应用. 力学进展, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 Deng Q B, Jia H X, Yang B, Qi Z P, Zhang Z Y, Lee A, Hu N. The electro-chemo-mechanical coupling at the solid-liquid interfaces and its applications to electrocatalysis . Advances in Mechanics, 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042 Citation: Deng Q B, Jia H X, Yang B, Qi Z P, Zhang Z Y, Lee A, Hu N. The electro-chemo-mechanical coupling at the solid-liquid interfaces and its applications to electrocatalysis . Advances in Mechanics , 2022, 52(2): 221-252 doi: 10.6052/1000-0992-21-042
基金项目: 国家科技重大专项(2017-Ⅶ-0011-0106)、国家自然科学基金项目(12172118, 11602171, U1864208)、河北省自然科学基金创新群体研究项目(A2020202002)、河北省研究发展重点计划(202030507040009)、中央引导地方科技发展资金项目(216Z4402G) 、天津市自然科学基金重点项目 (S20ZDF077) 、天津市科技计划项目(20ZYJDJC00030)和河北工业大学“元光学者”人才项目资助.
作者简介:

邓齐波, 男, 1985年生, 教授, 博士生导师, 天津市“海外高层次人才引进计划”获得者, 国际先进材料协会会士(IAAM Fellow). 目前兼任北京能源与环境学会京津冀专家委员会委员, 全国材料与器件科学家智库专家委员会常务委员. 主要从事电化学能源材料力化学耦合、新型电催化/储能体系构筑与性能优化技术等相关领域科学研究工作. 获2019年度国际先进材料协会科学家奖章, 国际Vebleo Fellow Award, 中国产学研合作促进奖, 中国发明协会发明创业创新奖二等奖等多项学术科技奖励

胡宁, 男, 1965年生, 教授, 博士生导师, 现任河北工业大学副校长兼机械工程学院院长. 国家杰出青年基金(海外杰青)获得者、国家“海外高层次人才引进计划”(A类)、国务院政府特殊津贴专家、中国力学学会理事、中国复合材料常务理事. 长期致力于固体力学、计算材料科学、结构与材料的力·热·电·化学等各类性能评价及相互耦合关系、结构型与功能型等各类复合材料研发、结构与材料的在线监测及线下无损检测技术等方面的研究工作. 出版英文书籍3部、教材1部; 发表SCI期刊论文380余篇, 论文被引用12000余次, H-index = 54; 连续7年入选爱思唯尔高被引学者榜单, 近2年连续入选全球前2%顶尖科学家榜单(“终身科学影响力排行耪”和“年度科学影响力排行耪”). 先后承担了包括国家自然科学重点基金、国家重点研发计划、国家科技重大专项等科研项目50余项

通讯作者: [email protected]

中图分类号: O646, TM911.4

目前许多新型高效金属催化剂在设计制备中都考虑到表面力学因素, 例如层状结构、核壳结构等, 其表面高活性原子受到不同程度的应变作用. 应变可直接改变金属的能带带隙, 对催化剂表面的电化学反应产生显著影响, 是一种有效提升材料催化活性的新思路和制备高性能催化剂的新途径, 因此受到了科研工作者的广泛关注. 传统的材料应变工程手段存在着活性物质层的应变值难以精确定量, 并缺少实时调控以及制备工艺繁琐等难题, 导致应变与电催化活性相关性规律识别方面的理论和实验研究进展缓慢. 相比于传统的材料手段, 交变载荷产生的应变具有幅值和频率的可变性以及连续的调控性, 在实验中可以完全排除噪声、缺陷、空位、基底效应等其他外部或材料本征的影响因素. 该综述从经典固液界面热力学表述出发, 简要介绍了电催化体系中的力−电−化学耦合效应, 归纳总结目前电催化体系中应变施加的实验手段和分析方法, 并基于目前相关研究着重讨论在交变载荷作用下应变对金属表面电催化反应的作用机理, 最后从力学角度展望了表面力学在电催化体系中的研究重点及发展趋势.

力−电−化学耦合 /  电化学麦克斯韦关系式 /  交变载荷 /  应变工程 /  电催化动力学模型 Abstract: Many advanced catalysts have considered the positive effect of surface mechanics during their design and preparation, in which the high active atoms on the surface are under different strain states. Strain can directly change the bandgap of a metal, which has a significant impact on the electrochemical reaction that occurred at the electrocatalyst surface. It is a new idea and effective strategy to improve the electrocatalytic activity of materials. Traditional strain engineering based on material strategies is difficult to accurately quantify the strain value of an active layer, which results in the unclear recognition of the relation between strain and electrocatalytic activity. The strain induced by the alternating load has the advantages of tunable amplitude and frequency as well as continuous modulation. From the classical thermodynamic of solid-liquid interface, this review briefly introduces the electro-chemo-mechanical coupling in electrocatalytic systems, and summarizes the experimental methods and the analysis methods in use for studying the effect of strain on electrocatalytic reactivity. It is also discussed in detail on the mechanism of strain on the electrocatalytic reaction at the metal surface under alternating load. Finally, the development and application of surface mechanics in electrochemical systems are prospected from the perspective of mechanics.

Key words: electro-chemo-mechanical coupling /  electrochemical Maxwell relation /  alternating load /  strain engineering /  electrocatalytic kinetic model  在电极电势保持恒定时, 对电极施加弹性应变( ε )作用(图1右侧), 金属材料面内原子间距从 ${r}_{0}^{{N}{N}}$ 增大到 $ {r}_{0}^{{N}{N}}\left(1+\dfrac{1}{2} \varepsilon \right) $ , 进而增大电极物理表面积( $ \overline{A} $ ). 另外,拉格朗日面积 A 和表面原子数目 N 保持不变. 系统吉布斯自由能的变化量与表面应力 ( f sl ) 成比例, 即 ${\text{δ }}{G^{{\rm{sl}}}} = {A_0}{f^{{\text{sl}}}}\varepsilon$ ( Weissmüller 2013 )

陈贵锋, 刘春峰, 陶俊光. 2018. 表面缺陷促进SnO微板在中性电解质中的电催化性能. 河北工业大学学报, 47 : 13-18 (Chen G F, Liu C F, Tao J G. 2018. Surface defects promoted electrocatalytic performance of SnO microplates in neutral electrolyte. Journal of Hebei University of Technology , 47 : 13-18 (in Chinese)).

Chen GF, Liu CF, Tao JG. 2018. Surface defects promoted electrocatalytic performance of SnO microplates in neutral electrolyte. Journal of Hebei University of Technology , 47 (6): 13-18. (in Chinese) 范玮, 秦春玲, 赵维民, 廖波. 2018. 纳米多孔SnSb合金在钠离子电池中的应用. 河北工业大学学报, 47 : 37-41 (Fan W, Qin C L, Zhao W M, Liao B. 2018. The nanoporous SnSb alloy electrode for Na-ion batteries application. Journal of Hebei University of Technology , 47 : 37-41 (in Chinese)).

Fan W, Qin CL, Zhao WM, Liao B. 2018. The nanoporous SnSb alloy electrode for Na-ion batteries application. Journal of Hebei University of Technology , 47 (5): 37-41. (in Chinese) 侯健, 杨铮, 贺婷, 李强, 王倩, 张建胜. 2021. 质子交换膜燃料电池热管理问题的研究进展. 中南大学学报(自然科学版), 52 : 19-30 (Hou J, Yang Z, He T, Li Q, Wang J, Zhang J S. 2021. Research progress on thermal management of proton exchange membrane fuel cells. Journal of Central South University ( Science and Technology ) , 52 : 19-30 (in Chinese)). doi: 10.11817/j.issn.1672-7207.2021.01.003

Hou J, Yang Z, He T, Li Q, Wang J, Zhang JS. 2021. Research progress on thermal management of proton exchange membrane fuel cells. Journal of Central South University(Science and Technology) , 52(1): 19−30. (in Chinese) doi: 10.11817/j.issn.1672-7207.2021.01.003 马增胜, 周益春, 刘军, 薛冬峰, 杨庆生, 潘勇. 2013. 锂离子电池硅负极材料衰退机理的研究进展. 力学进展, 43 : 581-599 (Ma Z S, Zhou Y C, Liu J Xue D F, Yang Q S, Pan Y. 2013. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries. Advances in Mechanics , 43 : 581-599 (in Chinese)). doi: 10.6052/1000-0992-13-066

Ma ZS, Zhou YC, Liu J Xue DF, Yang QS, Pan Y. 2013. Research progress in degradation mechanism of silicon anode materials for lithium-ion batteries. Advances in Mechanics , 43 : 581-599. (in Chinese) doi: 10.6052/1000-0992-13-066 杨盼盼, 李凯, 冯捷敏, 李大伟, 张俊乾. 2018. 锂离子薄膜电极充放电变形的原位实验观测方法. 实验力学, 33 : 716-724 (Yang P P, Li K, Feng J M, Li D W, Zhang J Q. 2018. On the in-situ experimental observation method of lithium-ion thin film electrode deformation in charge-discharge process. Journal of Experimental Mechanics , 33 : 716-724 (in Chinese)). doi: 10.7520/1001-4888-18-007

Yang PP, Li K, Feng JM, Li DW, Zhang JQ. 2018. On the in-situ experimental observation method of lithium-ion thin film electrode deformation in charge-discharge process. Journal of Experimental Mechanics , 33 : 716-724. (in Chinese) doi: 10.7520/1001-4888-18-007 赵亚溥. 2012. 表面与界面物理力学. 北京, 科学出版社

Zhao Y P. 2012. Surface and Interface Mechanics. Beijing: Science Press (in Chinese) 赵亚溥. 2014. 纳米与介观力学. 北京, 科学出版社.

Zhao Y P. 2014. Nano and Mesoscopic Mechanics. Beijing: Science Press (in Chinese) 朱博, 孟垂舟, 关玉明, 郭士杰. 2020. 柔性可充电锌空气电池研究进展. 河北工业大学学报, 29 : 27-38 (Zhu B, Meng C Z, Guan Y M, Guo S J. 2020. Recent advances in flexible rechargeable zinc-air batteries. Journal of Hebei University of Technology , 29 : 27-38 (in Chinese)).

Zhu B, Meng CZ, Guan YM, Guo SJ. 2020. Recent advances in flexible rechargeable zinc-air batteries. Journal of Hebei University of Technology , 29 (2): 27-38. (in Chinese) 张豪, 林栎阳, 吴博, 胡宁. 2020. 复合材料在柔性电化学储能装置中的应用及研究进展. 河北工业大学学报, 49 : 1-20 (Zhang H, Lin L Y, Wu B, Hu N. 2020. Research progress on the application of composite materials in flexible electrochemical energy storage devices. Journal of Hebei University of Technology , 49 : 1-20 (in Chinese)).

Zhang H, Lin LY, Wu B, Hu N. 2020. Research progress on the application of composite materials in flexible electrochemical energy storage devices. Journal of Hebei University of Technology , 49 (3): 1-20. (in Chinese) 张世龙, 冯磊, 李小娜, 王家喜. 2019. 镧改性锌铝氧化物的制备、表征及其催化性能. 河北工业大学学报, 48 : 29-34 (Zhang S L, Feng L, Li X A, Wang J X. 2019. Preparation and characterization of lanthanum modified zinc aluminum oxide and its catalytic performance. Journal of Hebei University of Technology , 48 : 29-34 (in Chinese)).

Zhang SL, Feng L, Li XA, Wang JX. 2019. Preparation and characterization of lanthanum modified zinc aluminum oxide and its catalytic performance. Journal of Hebei University of Technology , 48 (1): 29-34. (in Chinese) Bu L Z, Zhang N, Guo S J, Zhang X, Li J, Yao J L, Wu T, Lu G, Ma J Y, Su D, Huang X Q. 2016. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science , 354 : 1410-1414. doi: 10.1126/science.aah6133 Burebi Y, Jia Z, Qu S X. 2019. A chemo-mechanical model for fully-coupled lithiation reaction and stress generation in viscoplastic lithiated silicon. Science China : Technological Sciences , 62 : 1365-1374. doi: 10.1007/s11431-018-9499-x Cahn JW. 1978. Thermodynamics of solid and fluid surfaces. ASM, Metals Park , Ohio : 3-23. Cheng W R, Zhao X, Su H, Tang F M, Che W, Zhang H, Liu Q H. 2019. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nature Energy , 4 : 115-122. doi: 10.1038/s41560-018-0308-8 Deng Q B. 2014. Dynamic electro-chemo-mechanical analysis at the metal-electrolyte interface. Technische Universität Hamburg, Germany. Deng Q B, Smetanin M, Weissmüller J. 2014. Mechanical modulation of reaction rate in electrocatalysis. Journal of Catalysis , 309 : 351-361. Deng Q B, Weissmüller J, 2014. Electrocapillary coupling during electrosorption. Langmuir , 30 : 10522-10530. Deng Q B, Gopal V, Weissmüller J. 2015a. Less noble or more noble: How strain affects the binding of oxygen on gold. Angewandte Chemie International Edition , 54 : 12981-12985. doi: 10.1002/anie.201504715 Deng Q B, Gosslar D H, Smetanin M, Weissmüller J. 2015b. Electrocapillary coupling at rough surface. Physical Chemistry Chemical Physics , 17 : 11725-11731. doi: 10.1039/C5CP00167F Deng Q B, Yuan A T. 2019. Monitoring and modeling the variation of electrochemical current induced by dynamic strain at gold surfaces. Journal of The Electrochemical Society , 166 : H480-H484. doi: 10.1149/2.0081912jes Du M S, Cui L S, Cao Y, Bard A J. 2015. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. Journal of the American Chemical Society , 137 : 7397-7403. doi: 10.1021/jacs.5b03034 Du M S, Wan Q, Wang Z Q, Cui L S. 2016. Elastic strain induced improvement in the photocatalytic activity of semiconducting film exerted by the surface relief of Fe-Ni-Co-Ti alloy substrate. Materials Letters , 168 : 192-195. doi: 10.1016/j.matlet.2016.01.057 Eftekhari A. 2017. Tuning the electrocatalysts for oxygen evolution reaction. Materials Today Energy , 5 : 37-57. doi: 10.1016/j.mtener.2017.05.002 Gauthier Y, Schmid M, Padovani S, Lundgren E, Bus V, Kresse G, Redinger J, Varga P. 2001. Adsorption sites and ligand effect for CO on an alloy surface: A direct view. Physical Review Letters , 87 : 036103. doi: 10.1103/PhysRevLett.87.036103 Gennero de Chialvo M R, Chialvo A C. 1994. Hydrogen evolution reaction: analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. Journal of Electroanalytical Chemistry , 372 : 209-223. doi: 10.1016/0022-0728(93)03043-O Guo S, Zhang X, Zhu W, He K, Su D, Mendoza-Garcia A, Ho S F, Lu G, Sun S. 2014. Nanocatalyst superior to Pt for oxygen reduction reactions: The case of core/shell Ag(Au)/CuPd nanoparticles. Journal of the American Chemical Society , 136 : 15026-15033. doi: 10.1021/ja508256g Gsell M, Jakob P, Menzel D. 1998. Effect of substrate strain on adsorption. Science , 280 : 717-720. doi: 10.1126/science.280.5364.717 Gurtin M E, Murdoch A I. 1975. A continuum theory of elastic material surfaces. Arch Ration Mech Anal , 57 : 291-323. doi: 10.1007/BF00261375 Hammer B, Nørskov J K. 1995. Electronic factors determining the reactivity of metal surfaces. Surf. Sci , 343 : 211-220. Han L, Dong S J, Wang E K. 2016. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials , 26 : 9266-9291. He J, Shen Y L, Yang M Z, Zhang H X, Deng Q B, Ding Y. 2017. The effect of surface strain on the CO-poisoned surface of Pt electrode for hydrogen adsorption. Journal of Catalysis , 350 : 212-217. doi: 10.1016/j.jcat.2017.04.004 Huang H W, Jia HH, Liu Z, Gao P F, Zhao J T, Luo Z L, Yang J L, Zeng J. 2017. Understanding of strain effect in electrochemical reduction of CO 2 : Using Pd nanostructures as an ideal platform. Angewandte Chemie International Edition 56(13): 3594-3598 Khorshidi A, Violet J, Hashemi J, Peterson A A. 2018. How strain can break the scaling relations of catalysis. Nature Catalysis , 1 : 263-268. doi: 10.1038/s41929-018-0054-0 Kitchin J R, Norskov J K, Barteau M A, Chen J G. 2004. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Physical Review Letters , 95 : 156801. Kibler L A, El-Aziz A M, Hoyer R, Kolb D M. 2005. Tuning reaction rates by lateral strain in a palladium monolayer. Angewandte Chemie-International Edition , 44 : 2080-2084. doi: 10.1002/anie.200462127 Kibler L A. 2006. Hydrogen electrocatalysis. Chem Phys Chem. , 7 : 985-991. doi: 10.1002/cphc.200500646 Kibler L A. 2008. Dependence of electrocatalytic activity on film thickness for the hydrogen evolution reaction of Pd overlayers on Au(111). Electrochimica Acta , 53 : 6824-6828. doi: 10.1016/j.electacta.2008.01.097 Kramer D, Weissmüller J. 2007. A note on surface stress and surface tension and their interrelation via Shuttleworth's equation and the Lippmann equation. Surface Science , 601 : 3042-3051. doi: 10.1016/j.susc.2007.05.005 Lafouresse M C, Bertocci U, Beauchamp C R, Stafford G R. 2012. Simultaneous electrochemical and mechanical impedance spectroscopy using cantilever curvature. Journal of the Electrochemical Society , 159 : H816-H822. doi: 10.1149/2.055210jes Lee J H, Jang W S, Han S W, Baik H K. 2014. Efficient hydrogen evolution by mechanically strained MoS 2 nanosheets. Langmuir , 230 : 9866-9873. Li H, Tsai C, Koh A L, et al. 2016. Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature Materials , 15 : 48-53. doi: 10.1038/nmat4465 Li Y, Zhang J, Zhang K, Zheng B L, Yang F Q. 2019. A defect-based viscoplastic model for large-deformed thin film electrode of lithium-ion battery. International Journal of Plasticity , 115 : 293-306. doi: 10.1016/j.ijplas.2018.12.001 Li Y R, Li M X, Li S N. et al. 2021. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Metals , 40 : 3406-3441. doi: 10.1007/s12598-021-01747-8 Liang H Z, Zhang X Y, Yang L, Wu Y K, Fang D N. 2019. Electro-chemomechanical coupled behaviors of deformation and failure in electrode materials for lithium-ion batteries. Science China : Technological Sciences , 62 : 1277-1296. doi: 10.1007/s11431-018-9485-6 Liu B H, Wang X, Chen H S, Chen S, Yang H X, Xu J, Jiang H Q, Fang D N. 2019. A simultaneous multiscale and multiphysics model and numerical implementation of a core-shell model for lithium-ion full-cell batteries. Journal of Applied Mechanics , 86 : 041005. doi: 10.1115/1.4042432 Luo M C, Guo S J. 2017. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nature Reviews Materials , 2 : 17059. doi: 10.1038/natrevmats.2017.59 Ma Z, Wu H, Wang Y, Pan Y, Lu C. 2017. An electrochemical-irradiated plasticity model for metallic electrodes in lithium-ion batteries. International Journal of Plasticity , 88 : 188. Maark T A, Peterson A A. 2014. Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces. Journal of Physical Chemistry C , 118 : 4275-4281. doi: 10.1021/jp4121035 Masa J, Andronescu C, Antoni H, Sinev I, Seisel S, Elumeeva K, Barwe S, Marti-Sanchez S, Arbiol J, Roldan Cuenya B, et al. 2019. Role of boron and phosphorus in enhanced electrocatalytic oxygen evolution by nickel borides and nickel phosphides. ChemElectroChem , 6 : 235-240. doi: 10.1002/celc.201800669 Mavrikakis M, Hammer B, Nørskov J K. 1998. Effect of strain on the reactivity of metal surfaces. Physical Review Letters , 81 : 2819-2822. doi: 10.1103/PhysRevLett.81.2819 Mavrikakis M, Stoltze P, Nørskov J K. 2000. Making gold less noble. Catalysis letters , 64 : 101-106. Muralidharan N, Carter R, Oakes L, Coakes A P, Oint C L. 2016. Strain engineering to modify the electrochemistry of energy storage electrodes. Scientific Reports , 6 : 27542. doi: 10.1038/srep27542 Murdoch A I. 1976. A thermodynamical theory of elastic material interfaces. The Quarterly Journal of Mechanics and Applied Mathematics , 29 : 245-275. doi: 10.1093/qjmam/29.3.245 Niu Z, Wan Y, Li X, Zhang M, Lu G, Yan K. 2020. In-situ regulation of formic acid oxidation via elastic strains. Journal of Catalysis , 389 : 631-635. doi: 10.1016/j.jcat.2020.07.004 Parsons R. 1958 The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. , 54 : 1053-1063. Schlapka A, Lischka M, Groß A, Kӓsberger U, Jakob P. 2003. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru (0001). Physical Review Letters , 91 : 016101. doi: 10.1103/PhysRevLett.91.016101 Schnur S, Groß A. 2010. Strain and coordination effects in the adsorption properties of early transition metals: A density-functional theory study. Physical Review B , 81 : 033402. Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I B, Norskov J K, Jaramillo T F. 2017. Combining theory and experiment in electrocatalysis: Insights into materials design. Science , 355 : eaad4998. doi: 10.1126/science.aad4998 Sheng W, Gasteiger H A, Shao-Horn Y. 2010. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. Journal of The Electrochemical Society , 157 : B1529-B1536. doi: 10.1149/1.3483106 Smetanin M, Deng Q B, Weissmüller J. 2011. Dynamic electro-chemo-mechanical analysis during cyclic voltammetry. Physical Chemistry Chemical Physics , 13 : 17313-17322. doi: 10.1039/c1cp21781j Smetanin M, Kramer D, Mohanan S, Herr U, Weissmüller J. 2009. Response of the potential of a gold electrode to elastic strain. Physical Chemistry Chemical Physics , 11 : 9008-9012. doi: 10.1039/b913448d Smetanin M, Viswanath R N, Kramer D, Beckmann D, Koch T, Kibler L A, Kolb D M, Weissmüller J. 2008. Surface stress-charge response of a (111)-textured gold electrode under conditions of weak ion adsorption. Langmuir , 24 : 8561-8567. doi: 10.1021/la704067z Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C F, Liu Z C, Kaya S, Nordlund D, Ogasawara H, et al. 2010. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chemistry , 2 : 454-460. doi: 10.1038/nchem.623 Tavassol H, Jones E M C, Sottos N R, Gewirth A A. 2016. Electrochemical stiffness in lithium-ion batteries. Nature Materials , 15 : 1182. doi: 10.1038/nmat4708 Temmel S E, Fabbri E, Pergolesi D, Lippert T, Schmidt T J. 2016. Investigating the role of strain toward the oxygen reduction activity on model thin film Pt catalysts. ACS Catalysis , 6 : 7566-7576. doi: 10.1021/acscatal.6b01836 Wang A Q, Zhao Z L, Hu D, Niu J F, Zhang M, Yan K, Lu G. 2019. Tuning the oxygen evolution reaction on a nickel–iron alloy via active straining. Nanoscale , 11 : 426-430. doi: 10.1039/C8NR08879A Wang H, Shan X, Yu H, Wang Y, Schmickler W, Chen H Y, Tao N. 2017. Determining electrochemical surface stress of single nanowires. Angewandte Chemie International Edition , 129 : 2164-2135. Wang H T, Xu S C, Tsai C, Li Y Z, Liu C, Zhao J, Liu Y Y, Yuan H Y, Abild-Pedersen F, Prinz F B, et al. 2016. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science , 354 : 1031-1036. doi: 10.1126/science.aaf7680 Wang L, Stoerzinger K A, Chang L, Yin X M, Li Y Y, Tang C S, Jia E D, Bowden M E, Yang Z Z, Abdelsamie A, et al. 2019b. Strain effect on oxygen evolution reaction activity of epitaxial NdNiO 3 thin films. ACS Applied Materials & Interfaces , 11 : 12941-12947. Wang L, Zeng Z H, Gao W P, Maxson T, Raciti D, Giroux M, Pan X Q, Wang C, Greeley J, Wang J. 2019a. Tunable intrinsic strain in two-dimensional transition metal electrocatalysts. Science , 363 : 870. doi: 10.1126/science.aat8051 Wang P, Qu W J, Song W L, Chen H S, Chen R J, Fang D N. 2019. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Advanced Functional Materials , 29 : 1900950. Wang X, Choi S I, Roling L T, et al. 2015. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nature Communication , 6 : 7594. doi: 10.1038/ncomms8594 Wang Z Q, Zhao Y P. 2011. Thermo-hyperelastic models for nanostructured materials. Science China-Physics Mechanics & Astronomy , 54 : 948-956. Weissmüller J, Kramer D. 2005. Balance of force at curved solid metal–liquid electrolyte interfaces. Langmuir , 21 : 4592-4603. doi: 10.1021/la047838a Weissmüller J. 2013. “Electrocapillarity of solids and its impact on heterogeneous catalysis” in Electrocatalysis: Theoretical Foundations and Model Experiments. Electrocatalysis , 163-220. Xie H M, Zhang Q, Song H B, Shi B Q, Kang Y L. 2017. Modeling and in situ characterization of lithiation-induced stress in electrodes during the coupled mechano-electro-chemical process. Journal of Power Sources , 342 : 896-903. doi: 10.1016/j.jpowsour.2017.01.017 Xu R, Zhao K J. 2018. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids , 121 : 258-280. doi: 10.1016/j.jmps.2018.07.021 Xue Y Y, Ge H, Chen Z, Zhai, Y B, Zhang J, Sun J Q, Abbas M, Lin K, Zhao W T, Chen J G. 2018. Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis. Journal of Catalysis , 358 : 237-242. doi: 10.1016/j.jcat.2017.12.017 Yan K, Maark T A, Khorshidi A, et al. 2016. The influence of elastic strain on catalytic activity in the hydrogen evolution reaction. Angewandte Chemie-International Edition , 55 : 6175-6181. doi: 10.1002/anie.201508613 Yan K, Kim S K, Khorshidi A, et al. 2017. High elastic strain directly tunes the hydrogen evolution reaction on tungsten carbide. The Journal of Physical Chemistry C , 121 : 6177-6183. doi: 10.1021/acs.jpcc.7b00281 Yang M Z, Zhang H X, Deng Q B. 2017. Understanding the copper underpotential deposition process at strained gold surface. Electrochemistry Communications , 82 : 125-128. Yao J D, Huang W J, Fang W, Kuang M, Jia N, Ren H, Liu D B, Lv C D, Liu C T, Xu J W, et al. 2020. Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: Effects of electric field, magnetic field strain and light. Small Methods , 4 : 2000494. doi: 10.1002/smtd.202000494 You B, Tang M T, Tsai C, Abild-Pedersen F, Zheng X L, Li H. 2019. Enhancing electrocatalytic water splitting by strain engineering. Advanced Materials , 31 : 1807001. doi: 10.1002/adma.201807001 Yuan A T, Zhang H X, Deng D B. 2019. A simple mechanical method to modulate the electrochemical electrosorption processes at metal surfaces. Molecules 24 : 3662. Zhang H X, An C H, Yuan A T, Deng Q B, Ning J L. 2018. A non-conventional way to modulate the capacitive process on carbon cloth by mechanical stretching. Electrochemistry Communications , 89 : 43. doi: 10.1016/j.elecom.2018.02.017 Zhao K J, Cui Y. 2016. Understanding the role of mechanics in energy materials: A perspective. Extreme Mechanics Letters 9 : 347-352. Zhu T, Fang X F, Wang B L. 2019. Challenges and opportunities in chemomechanics of materials: A perspective. Science China : Technological Sciences , 62 : 1385-1387. doi: 10.1007/s11431-018-9516-2

地址:北京海淀区北四环西路15号(100190) 电话:010-62637035 邮箱: [email protected]

北京仁和汇智信息技术有限公司