添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely. As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more: PMC Disclaimer Immunol Lett. (2007) 108 :45–51. 10.1016/j.imlet.2006.10.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
19. Harms RZ, Lorenzo-Arteaga KM, Ostlund KR, Smith VB, Smith LM, Gottlieb P, et al.. Abnormal T cell frequencies, including cytomegalovirus-associated expansions, distinguish seroconverted subjects at risk for type 1 diabetes . Front Immunol. (2018) 9 :2332. 10.3389/fimmu.2018.02332 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
20. Rouxel O, Beaudoin L, Nel I, Tard C, Cagninacci L, Kiaf B, et al.. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes . Nat Immunol. (2017) 18 :1321–31. 10.1038/ni.3854 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
21. Harms RZ, Ostlund KR, Cabrera M, Edwards E, Fisher M, Sarvetnick N. Confirmation and identification of biomarkers implicating environmental triggers in the pathogenesis of type 1 diabetes . Front Immunol. (2020) 11 :1922. 10.3389/fimmu.2020.01922 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
22. Genovese S, Bingley P, Bonifacio E, Christie M, Shattock M, Bonfanti R, et al.. Combined analysis of IDDM-related autoantibodies in healthy schoolchildren . Lancet. (1994) 344 :756. 10.1016/S0140-6736(94)92248-9 [ PubMed ] [ CrossRef ] [ Google Scholar ]
23. Walikonis JE, Lennon VA. Radioimmunoassay for glutamic acid decarboxylase (GAD65) autoantibodies as a diagnostic aid for stiff-man syndrome and a correlate of susceptibility to type 1 diabetes mellitus . Mayo Clin Proc. (1998) 73 :1161–6. 10.4065/73.12.1161 [ PubMed ] [ CrossRef ] [ Google Scholar ]
24. Maclaren N, Lan M, Schatz D, Malone J, Notkins A, Krischer J. Multiple autoantibodies as predictors of Type 1 diabetes in a general population . Diabetologia. (2003) 46 :873–4. 10.1007/s00125-003-1123-7 [ PubMed ] [ CrossRef ] [ Google Scholar ]
25. Gesualdo PD, Bautista KA, Waugh KC, Yu L, Norris JM, Rewers MJ, et al.. Feasibility of screening for T1D and celiac disease in a pediatric clinic setting . Pediatr Diabetes. (2016) 17 :441–8. 10.1111/pedi.12301 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
26. Simmons KM, Youngkin E, Alkanani A, Miao D, McDaniel K, Yu L, et al.. Screening children for type 1 diabetes-associated antibodies at community health fairs . Pediatr Diabetes. (2019) 20 :909–14. 10.1111/pedi.12902 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
27. Team RC. R: A Language and Environment for Statistical Computing . Vienna: R Foundation for Statistical Computing; (2018). [ Google Scholar ]
28. Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et al.. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients . J Clin Investig. (2015) 125 :1752–62. 10.1172/JCI78941 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
29. Willing A, Leach OA, Ufer F, Attfield KE, Steinbach K, Kursawe N, et al.. CD 8+ MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis . Eur J Immunol. (2014) 44 :3119–28. 10.1002/eji.201344160 [ PubMed ] [ CrossRef ] [ Google Scholar ]
30. Cosgrove C, Ussher JE, Rauch A, Gärtner K, Kurioka A, Hühn MH, et al.. Early and nonreversible decrease of CD161++/MAIT cells in HIV infection . Blood. (2013) 121 :951–61. 10.1182/blood-2012-06-436436 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
31. Leeansyah E, Ganesh A, Quigley MF, Sönnerborg A, Andersson J, Hunt PW, et al.. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection . Blood. (2013) 121 :1124–35. 10.1182/blood-2012-07-445429 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
32. Loh L, Wang Z, Sant S, Koutsakos M, Jegaskanda S, Corbett AJ, et al.. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18–dependent activation . Proc Natl Acad Sci USA. (2016) 113 :10133–8. 10.1073/pnas.1610750113 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
33. Van Wilgenburg B, Scherwitzl I, Hutchinson EC, Leng T, Kurioka A, Kulicke C, et al.. MAIT cells are activated during human viral infections . Nat Commun. (2016) 7 :1–11. 10.1038/ncomms11653 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
34. Paquin-Proulx D, Greenspun BC, Costa EA, Segurado AC, Kallas EG, Nixon DF, et al.. MAIT cells are reduced in frequency and functionally impaired in human T lymphotropic virus type 1 infection: potential clinical implications . PLoS ONE. (2017) 12 :e0175345. 10.1371/journal.pone.0175345 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
35. Huang W, He W, Shi X, Ye Q, He X, Lang D, et al.. Mucosal-associated invariant T-cells are severely reduced and exhausted in humans with chronic HBV infection . J Viral Hepat. (2020) 27 :1096–11. 10.1111/jvh.13341 [ PubMed ] [ CrossRef ] [ Google Scholar ]
36. Beam CA, Wasserfall C, Woodwyk A, Akers M, Rauch H, Blok T, et al.. Synchronization of the normal Human peripheral immune System: a comprehensive circadian Systems immunology Analysis . Sci Rep. (2020) 10 :1–14. 10.1038/s41598-019-56951-5 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
37. Harms RZ, Lorenzo KM, Corley KP, Cabrera MS, Sarvetnick NE. Altered CD161bright CD8+ mucosal associated invariant T (MAIT)-like cell dynamics and increased differentiation states among juvenile type 1 diabetics . PLoS ONE. (2015) 10 :e0117335. 10.1371/journal.pone.0117335 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
38. Gazali AM, Schroderus A-M, Näntö-Salonen K, Rintamäki R, Pihlajamäki J, Knip M, et al.. Mucosal-associated invariant T cell alterations during the development of human type 1 diabetes . Diabetologia. (2020) 63 :2396–409. 10.1007/s00125-020-05257-7 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
39. Lee O-J, Cho Y-N, Kee S-J, Kim M-J, Jin H-M, Lee S-J, et al.. Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults . Exp Gerontol. (2014) 49 :47–54. 10.1016/j.exger.2013.11.003 [ PubMed ] [ CrossRef ] [ Google Scholar ]
40. Walker L, Tharmalingam H, Klenerman P. The rise and fall of MAIT cells with age . Scand J Immunol. (2014) 80 :462. 10.1111/sji.12237 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
41. Kuric E, Krogvold L, Hanssen KF, Dahl-Jørgensen K, Skog O, Korsgren O. No evidence for presence of mucosal-associated invariant T cells in the insulitic lesions in patients recently diagnosed with type 1 diabetes . Am J Pathol. (2018) 188 :1744–8. 10.1016/j.ajpath.2018.04.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
42. Cui Y, Franciszkiewicz K, Mburu YK, Mondot S, Le Bourhis L, Premel V, et al.. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation . J Clin Investig. (2015) 125 :4171–85. 10.1172/JCI82424 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
43. Brozova J, Karlova I, Novak J. Analysis of the phenotype and function of the subpopulations of mucosal-associated invariant T cells . Scand J Immunol. (2016) 84 :245–51. 10.1111/sji.12467 [ PubMed ] [ CrossRef ] [ Google Scholar ]
44. Dias J, Boulouis C, Gorin J-B, van den Biggelaar RH, Lal KG, Gibbs A, et al.. The CD4- CD8- MAIT cell subpopulation is a functionally distinct subset developmentally related to the main CD8+ MAIT cell pool . Proc Natl Acad Sci USA. (2018) 115 :E11513–22. 10.1073/pnas.1812273115 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
45. Pincikova T, Paquin-Proulx D, Sandberg J, Flodström-Tullberg M, Hjelte L. Vitamin D treatment modulates immune activation in cystic fibrosis . Clin Exp Immunol. (2017) 189 :359–71. 10.1111/cei.12984 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
46. Hinks TS, Marchi E, Jabeen M, Olshansky M, Kurioka A, Pediongco TJ, et al.. Activation and in vivo evolution of the MAIT cell transcriptome in mice and humans reveals tissue repair functionality . Cell Rep. (2019) 28 :3249–62. 10.1016/j.celrep.2019.07.039 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
47. Von Essen MR, Kongsbak M, Schjerling P, Olgaard K, Ødum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells . Nat Immunol. (2010) 11 :344–9. 10.1038/ni.1851 [ PubMed ] [ CrossRef ] [ Google Scholar ]
48. Joseph RW, Bayraktar UD, Kim TK, John LSS, Popat U, Khalili J, et al.. Vitamin D receptor upregulation in alloreactive human T cells . Hum Immunol. (2012) 73 :693–8. 10.1016/j.humimm.2012.04.019 [ PubMed ] [ CrossRef ] [ Google Scholar ]
49. Rigby W, Waugh M, Graziano R. Regulation of human monocyte HLA-DR and CD4 antigen expression, and antigen presentation by 1, 25-dihydroxyvitamin D3 . Blood . (1990) 76 :189–97. 10.1182/blood.V76.1.189.bloodjournal761189 [ PubMed ] [ CrossRef ] [ Google Scholar ]
50. Barragan M, Good M, Kolls JK. Regulation of dendritic cell function by vitamin D . Nutrients. (2015) 7 :8127–51. 10.3390/nu7095383 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
51. Tang X-Z, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, et al.. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells . J Immunol. (2013) 190 :3142–52. 10.4049/jimmunol.1203218 [ PubMed ] [ CrossRef ] [ Google Scholar ]
52. Leeansyah E, Svärd J, Dias J, Buggert M, Nyström J, Quigley MF, et al.. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection . PLoS Pathog. (2015) 11 :e1005072. 10.1371/journal.ppat.1005072 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
53. Gracey E, Qaiyum Z, Almaghlouth I, Lawson D, Karki S, Avvaru N, et al.. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis . Ann Rheum Dis. (2016) 75 :2124–32. 10.1136/annrheumdis-2015-208902 [ PubMed ] [ CrossRef ] [ Google Scholar ]
54. Armitage R, Namen A, Sassenfeld H, Grabstein K. Regulation of human T cell proliferation by IL-7 . J Immunol. (1990) 144 :938–41. [ PubMed ] [ Google Scholar ]
55. Havenith SH, Yong SL, Henson SM, Piet B, Idu MM, Koch SD, et al.. Analysis of stem-cell-like properties of human CD161++ IL-18Rα+ memory CD8+ T cells . Int Immunol. (2012) 24 :625–36. 10.1093/intimm/dxs069 [ PubMed ] [ CrossRef ] [ Google Scholar ]
56. Rosenberg SA, Sportès C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, et al.. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells . J Immunother. (2006) 29 :313. 10.1097/01.cji.0000210386.55951.c2 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
57. Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, et al.. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets . J Exp Med. (2008) 205 :1701–14. 10.1084/jem.20071681 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
58. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, et al.. CD 161++ CD 8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+ IL-18 in a TCR-independent manner . Eur J Immunol. (2014) 44 :195–203. 10.1002/eji.201343509 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
59. Sattler A, Dang-Heine C, Reinke P, Babel N. IL-15 dependent induction of IL-18 secretion as a feedback mechanism controlling human MAIT-cell effector functions . Eur J Immunol. (2015) 45 :2286–98. 10.1002/eji.201445313 [ PubMed ] [ CrossRef ] [ Google Scholar ]
60. Jiang J, Chen X, An H, Yang B, Zhang F, Cheng X. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling . Sci Rep. (2016) 6 :1–16. 10.1038/srep32320 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
61. Myhr CB, Hulme MA, Wasserfall CH, Hong PJ, Lakshmi PS, Schatz DA, et al.. The autoimmune disease-associated SNP rs917997 of IL18RAP controls IFNγ production by PBMC . J Autoimmun. (2013) 44 :8–12. 10.1016/j.jaut.2013.06.001 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
62. Dinarello CA, Novick D, Kim S, Kaplanski G. IL-18 and IL-18 binding protein . Front Immunol. (2013) 4 :289. 10.3389/fimmu.2013.00289 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
63. Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study . Lancet. (2008) 371 :1777–82. 10.1016/S0140-6736(08)60765-5 [ PubMed ] [ CrossRef ] [ Google Scholar ]

Articles from Frontiers in Immunology are provided here courtesy of Frontiers Media SA