添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • SQL-schema使用示例
  • DDL(Data Definition Language)创建table
  • DML(Data Manipulation Language)使用insert插入数据
  • DQL(Data Query Language)使用select查询数据
  • ORM 示例
  • model核心功能
  • SQLAlchemy是Python SQL工具箱和ORM框架,它为应用程序开发人员提供了全面而灵活的SQL功能。它提供了一整套企业级持久化方案,旨在高效,高性能地访问数据库,并符合Pythonic之禅。项目代码量比较大,接近200个文件,7万行代码, 我们一起来挑战一下。由于篇幅原因,分成上下两篇,上篇我们学习了core部分的engine,dialect,connection和pool等部分,下篇主要学习core部分剩余的sql表达式和orm部分,包括如下内容:

  • SQL-schema使用示例
  • DDL(Data Definition Language)创建table
  • DML(Data Manipulation Language)使用insert插入数据
  • DQL(Data Query Language)使用select查询数据
  • ORM示例
  • model核心功能
  • SQL-schema使用示例

    上篇中,我们使用的sql都是手工编写的语句,下面这样:

    create table x (a integer, b integer)
    insert into x (a, b) values (1, 1)
    

    在sqlalchemy中可以通过定义schema的方式进行数据操作,完整的示例如下:

    from sqlalchemy import create_engine
    from sqlalchemy import MetaData
    from sqlalchemy import Table
    from sqlalchemy import Column
    from sqlalchemy import Integer
    from sqlalchemy import String
    from sqlalchemy.sql import select
    engine = create_engine('sqlite:///:memory:', echo=True)
    metadata = MetaData()
    users = Table('users', metadata,
                  Column('id', Integer, primary_key=True),
                  Column('name', String),
                  Column('fullname', String),
    metadata.create_all(engine)
    ins = users.insert().values(name='jack', fullname='Jack Jones')
    print(ins)
    result = engine.execute(ins)
    print(result, result.inserted_primary_key)
    s = select([users])
    result = conn.execute(s)
    for row in result:
        print(row)
    result = engine.execute("select * from users")
    for row in result:
        print(row)
    

    示例程序的执行过程:

  • 创建engine,用于数据库连接
  • 创建metadata,用于管理schema
  • 创建users表的Table,绑定到metadata;同时包括id,name和fullname三个column
  • 将metadata提交到engine(创建表)
  • 使用users插入数据
  • 查询users的数据
  • 使用普通sql的方式验证数据
  • 下面是示例的执行日志,清晰展示了上面过程:

    2021-04-19 10:02:09,166 INFO sqlalchemy.engine.base.Engine CREATE TABLE users ( id INTEGER NOT NULL, name VARCHAR, fullname VARCHAR, PRIMARY KEY (id) 2021-04-19 10:02:09,166 INFO sqlalchemy.engine.base.Engine () 2021-04-19 10:02:09,167 INFO sqlalchemy.engine.base.Engine COMMIT INSERT INTO users (name, fullname) VALUES (:name, :fullname) 2021-04-19 10:02:09,167 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name, fullname) VALUES (?, ?) 2021-04-19 10:02:09,168 INFO sqlalchemy.engine.base.Engine ('jack', 'Jack Jones') 2021-04-19 10:02:09,168 INFO sqlalchemy.engine.base.Engine COMMIT <sqlalchemy.engine.result.ResultProxy object at 0x7ffca0607070> [1] 2021-04-27 11:38:19,134 INFO sqlalchemy.engine.base.Engine SELECT users.id, users.name, users.fullname FROM users 2021-04-27 11:38:19,134 INFO sqlalchemy.engine.base.Engine () (1, 'jack', 'Jack Jones') 2021-04-19 10:02:09,168 INFO sqlalchemy.engine.base.Engine select * from users 2021-04-19 10:02:09,168 INFO sqlalchemy.engine.base.Engine () (1, 'jack', 'Jack Jones')

    在开始之前,我们需要简单了解一下SQL语句的分类:

    在我们的schema使用示例中,就包括了DDL,DML和DQL三种类型的语句,下面我们按照这3种类型,详细了解一下sqlalchemy的sql表达式部分。sql表达式主要在sql包中,部分文件的功能如下:

    def __init__(cls, clsname, bases, clsdict): if clsname != "Visitable" and hasattr(cls, "__visit_name__"): _generate_dispatch(cls) super(VisitableType, cls).__init__(clsname, bases, clsdict) def _generate_dispatch(cls): if "__visit_name__" in cls.__dict__: visit_name = cls.__visit_name__ if isinstance(visit_name, str): getter = operator.attrgetter("visit_%s" % visit_name) def _compiler_dispatch(self, visitor, **kw): meth = getter(visitor) except AttributeError: raise exc.UnsupportedCompilationError(visitor, cls) else: return meth(self, **kw) cls._compiler_dispatch = _compiler_dispatch class Visitable(util.with_metaclass(VisitableType, object)):

    Visitable约定子类必须提供 visit_name 的类属性,用来绑定编译方法。参与sql的类都继承自Visitable:

    class SchemaItem(SchemaEventTarget, visitors.Visitable):
        __visit_name__ = "schema_item"
    class MetaData(SchemaItem):
        __visit_name__ = "metadata"
    class Table(DialectKWArgs, SchemaItem, TableClause):
        __visit_name__ = "table"
    class Column(DialectKWArgs, SchemaItem, ColumnClause):
        __visit_name__ = "column"
    class TypeEngine(Visitable):
    class Integer(_LookupExpressionAdapter, TypeEngine):
        __visit_name__ = "integer"
    

    MetaData是schema的集合,记录了所有的Table定义, 通过 _add_table 函数用来添加表:

    class MetaData(SchemaItem):
        def __init__(
            self,
            bind=None,
            reflect=False,
            schema=None,
            quote_schema=None,
            naming_convention=None,
            info=None,
            # table集合
            self.tables = util.immutabledict()
            self.schema = quoted_name(schema, quote_schema)
            self._schemas = set()
        def _add_table(self, name, schema, table):
            key = _get_table_key(name, schema)
            dict.__setitem__(self.tables, key, table)
            if schema:
                self._schemas.add(schema)
    

    Table是column的集合,在创建table对象的时候,把自己添加到metadata中:

    class Table(DialectKWArgs, SchemaItem, TableClause):
        def __new__(cls, *args, **kw):
            name, metadata, args = args[0], args[1], args[2:]
            schema = metadata.schema
            table = object.__new__(cls)
            # 添加到metadata
            metadata._add_table(name, schema, table)
            table._init(name, metadata, *args, **kw)
            return table
        def _init(self, name, metadata, *args, **kwargs):
            super(Table, self).__init__(
                quoted_name(name, kwargs.pop("quote", None))
            self.metadata = metadata
            self.schema = metadata.schema
            # column集合
            self._columns = ColumnCollection()
            self._init_items(*args)
        def _init_items(self, *args):
            # column 
            for item in args:
                if item is not None:
                    item._set_parent_with_dispatch(self)
    

    Column是通过下面的方法将column添加到table的colummns中:

    class Column(DialectKWArgs, SchemaItem, ColumnClause):
        def __init__(self, *args, **kwargs):
        def _set_parent(self, table):
            table._columns.replace(self)
    class ColumnCollection(util.OrderedProperties):
        def replace(self, column):
            self._data[column.key] = column
    

    现阶段,我们大概厘清了metadata,table和column的数据结构:metadata持有table集合,table持有column集合。接下来我们看看这个数据结构如何转换成sql语句,API是通过 MetaData.create_all 函数实现:

    class MetaData(SchemaItem):
        def create_all(self, bind=None, tables=None, checkfirst=True):
            bind._run_visitor(
                ddl.SchemaGenerator, self, checkfirst=checkfirst, tables=tables
    class Engine(Connectable, log.Identified):
        def _run_visitor(
            self, visitorcallable, element, connection=None, **kwargs
            with self._optional_conn_ctx_manager(connection) as conn:
                conn._run_visitor(visitorcallable, element, **kwargs)
    class Connection(Connectable):
        def _run_visitor(self, visitorcallable, element, **kwargs):
            visitorcallable(self.dialect, self, **kwargs).traverse_single(element)
    

    create-table的sql编译主要由ddl中的SchemaGenerator实现, 下面是SchemaGenerator的继承关系和核心的traverse_single函数:

    class ClauseVisitor(object):
        def traverse_single(self, obj, **kw):
            # 遍历所有的visit实现 
            for v in self.visitor_iterator:
                meth = getattr(v, "visit_%s" % obj.__visit_name__, None)
                if meth:
                    return meth(obj, **kw)
        @property
        def visitor_iterator(self):
            v = self
            while v:
                yield v
                v = getattr(v, "_next", None)
    class SchemaVisitor(ClauseVisitor):
    class DDLBase(SchemaVisitor):
    class SchemaGenerator(DDLBase):
    

    创建meta,table和columun的过程:

    class SchemaGenerator(DDLBase):
        def visit_metadata(self, metadata):
            tables = list(metadata.tables.values())
            collection = sort_tables_and_constraints(
                [t for t in tables if self._can_create_table(t)]
            for table, fkcs in collection:
                if table is not None:
                    # 创建表 
                    self.traverse_single(
                        table,
                        create_ok=True,
                        include_foreign_key_constraints=fkcs,
                        _is_metadata_operation=True,
        def visit_table(
            self,
            table,
            create_ok=False,
            include_foreign_key_constraints=None,
            _is_metadata_operation=False,
            for column in table.columns:
                if column.default is not None:
                    # 创建column-DDLElement
                    self.traverse_single(column.default)
            self.connection.execute(
                # fmt: off
                # 创建create-table-DDLElement
                CreateTable(
                    table,
                    include_foreign_key_constraints=  # noqa
                        include_foreign_key_constraints,
    
    
    
    
    
        
                # fmt: on
    

    CreateTableDDLElement和CreateColumnDDLElement的继承关系:

    class _DDLCompiles(ClauseElement):
        def _compiler(self, dialect, **kw):
            return dialect.ddl_compiler(dialect, self, **kw)
    class DDLElement(Executable, _DDLCompiles):
    class _CreateDropBase(DDLElement):
    class CreateTable(_CreateDropBase):
        __visit_name__ = "create_table"
        def __init__(
            self, element, on=None, bind=None, include_foreign_key_constraints=None
            super(CreateTable, self).__init__(element, on=on, bind=bind)
            self.columns = [CreateColumn(column) for column in element.columns]
    class CreateColumn(_DDLCompiles):
        __visit_name__ = "create_column"
        def __init__(self, element):
            self.element = element
    

    最终这些DDLElement在compiler中被DDLCompiler编译成sql语句, CREATE TABLE是这样被编译的:

    def visit_create_table(self, create):
        table = create.element
        preparer = self.preparer
        text = "\nCREATE "
        if table._prefixes:
            text += " ".join(table._prefixes) + " "
        text += "TABLE " + preparer.format_table(table) + " "
        create_table_suffix = self.create_table_suffix(table)
        if create_table_suffix:
            text += create_table_suffix + " "
        text += "("
        separator = "\n"
        # if only one primary key, specify it along with the column
        first_pk = False
        for create_column in create.columns:
            column = create_column.element
                processed = self.process(
                    create_column, first_pk=column.primary_key and not first_pk
                if processed is not None:
                    text += separator
                    separator = ", \n"
                    text += "\t" + processed
                if column.primary_key:
                    first_pk = True
            except exc.CompileError as ce:
        const = self.create_table_constraints(
            table,
            _include_foreign_key_constraints=create.include_foreign_key_constraints,  # noqa
        if const:
            text += separator + "\t" + const
        text += "\n)%s\n\n" % self.post_create_table(table)
        return text
    def visit_create_column(self, create, first_pk=False):
        column = create.element
        text = self.get_column_specification(column, first_pk=first_pk)
        const = " ".join(
            self.process(constraint) for constraint in column.constraints
        if const:
            text += " " + const
        return text
    

    在前面column介绍中,我们略过了数据类型。大家都知道sql的数据类型和python数据类型有差异, 下面是一些常见的SQL数据类型:

    class TypeEngine(Visitable):
    class Integer(_LookupExpressionAdapter, TypeEngine):
        __visit_name__ = "integer"
    class String(Concatenable, TypeEngine):
        __visit_name__ = "string"
    class CHAR(String):
        __visit_name__ = "CHAR"
    class VARCHAR(String):
        __visit_name__ = "VARCHAR"
    

    数据类型由GenericTypeCompiler进行编译:

    class TypeCompiler(util.with_metaclass(util.EnsureKWArgType, object)):
        def process(self, type_, **kw):
            return type_._compiler_dispatch(self, **kw)
    class GenericTypeCompiler(TypeCompiler):
        def visit_INTEGER(self, type_, **kw):
            return "INTEGER"
        def visit_string(self, type_, **kw):
            return self.visit_VARCHAR(type_, **kw)
        def visit_VARCHAR(self, type_, **kw):
            return self._render_string_type(type_, "VARCHAR")
        def _render_string_type(self, type_, name):
            text = name
            if type_.length:
                text += "(%d)" % type_.length
            if type_.collation:
                text += ' COLLATE "%s"' % type_.collation
            return text
    

    DML(Data Manipulation Language)使用insert插入数据

    数据插入的API由TableClause提供的insert函数:

    class TableClause(Immutable, FromClause):
        @util.dependencies("sqlalchemy.sql.dml")
        def insert(self, dml, values=None, inline=False, **kwargs):
            return dml.Insert(self, values=values, inline=inline, **kwargs)
    

    dml中提供了Insert类的实现:

    class UpdateBase(
        HasCTE, DialectKWArgs, HasPrefixes, Executable, ClauseElement
    class ValuesBase(UpdateBase):
    class Insert(ValuesBase):
        __visit_name__ = "insert"
    

    按照ddl的经验,我们查找insert语句的编译方法,在SQLCompiler中:

    class SQLCompiler(Compiled):
        def visit_insert(self, insert_stmt, asfrom=False, **kw):
            crud_params = crud._setup_crud_params(
                self, insert_stmt, crud.ISINSERT, **kw
            if insert_stmt._has_multi_parameters:
                crud_params_single = crud_params[0]
            else:
                crud_params_single = crud_params
            preparer = self.preparer
            supports_default_values = self.dialect.supports_default_values
            text = "INSERT "
            text += "INTO "
            table_text = preparer.format_table(insert_stmt.table)
            if crud_params_single or not supports_default_values:
                text += " (%s)" % ", ".join(
                    [preparer.format_column(c[0]) for c in crud_params_single]
            if insert_stmt.select is not None:
                select_text = self.process(self._insert_from_select, **kw)
                if self.ctes and toplevel and self.dialect.cte_follows_insert:
                    text += " %s%s" % (self._render_cte_clause(), select_text)
                else:
                    text += " %s" % select_text
            elif not crud_params and supports_default_values:
                text += " DEFAULT VALUES"
            elif insert_stmt._has_multi_parameters:
                text += " VALUES %s" % (
                    ", ".join(
                        "(%s)" % (", ".join(c[1] for c in crud_param_set))
                        for crud_param_set in crud_params
            else:
                text += " VALUES (%s)" % ", ".join([c[1] for c in crud_params])
            return text
    

    可以看到insert语句就是对Insert对象,通过字符串模版拼接而来。

    DQL(Data Query Language)使用select查询数据

    数据查询select语句也都有特定的数据结构Select,继承关系如下:

    class SelectBase(HasCTE, Executable, FromClause):
    class GenerativeSelect(SelectBase):
    class Select(HasPrefixes, HasSuffixes, GenerativeSelect):
        __visit_name__ = "select"
        def __init__(
            self,
            columns=None,
            whereclause=None,
            from_obj=None,
            distinct=False,
            having=None,
            correlate=True,
            prefixes=None,
            suffixes=None,
            **kwargs
            GenerativeSelect.__init__(self, **kwargs)
    

    select的编译语句也在SQLCompiler中:

    class SQLCompiler(Compiled):
        def visit_select(
            self,
            select,
            asfrom=False,
            parens=True,
            fromhints=None,
            compound_index=0,
            nested_join_translation=False,
            select_wraps_for=None,
            lateral=False,
            **kwargs
            froms = self._setup_select_stack(select, entry, asfrom, lateral)
            column_clause_args = kwargs.copy()
            column_clause_args.update(
                {"within_label_clause": False, "within_columns_clause": False}
            text = "SELECT "  # we're off to a good start !
            text += self.get_select_precolumns(select, **kwargs)
            # the actual list of columns to print in the SELECT column list.
            inner_columns = [
                for c in [
                    self._label_select_column(
                        select,
                        column,
                        populate_result_map,
                        asfrom,
                        column_clause_args,
                        name=name,
                    for name, column in select._columns_plus_names
                if c is not None
            text = self._compose_select_body(
                text, select, inner_columns, froms, byfrom, kwargs
            if select._statement_hints:
                per_dialect = [
                    for (dialect_name, ht) in select._statement_hints
                    if dialect_name in ("*", self.dialect.name)
                if per_dialect:
                    text += " " + self.get_statement_hint_text(per_dialect)
            if self.ctes and toplevel:
                text = self._render_cte_clause() + text
            if select._suffixes:
                text += " " + self._generate_prefixes(
                    select, select._suffixes, **kwargs
            self.stack.pop(-1)
            if (asfrom or lateral) and parens:
                return "(" + text + ")"
            else:
                return text
    

    select语句一样是采用字符串拼接得到。

    ORM 示例

    orm的使用和schema使用方式略有不同, 下面是orm的示例:

    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy import Column, Integer, String
    from sqlalchemy.orm import sessionmaker
    engine = create_engine('sqlite:///:memory:', echo=True)
    Model = declarative_base()
    class User(Model):
        __tablename__ = 'users'
        id = Column(Integer, primary_key=True)
        name = Column(String)
        fullname = Column(String)
        nickname = Column(String)
        def __repr__(self):
            return "<User(name='%s', fullname='%s', nickname='%s')>" % (
                self.name, self.fullname, self.nickname)
    Model.metadata.create_all(engine)
    print("="*10)
    Session = sessionmaker(bind=engine)
    session = Session()
    ed_user = User(name='ed', fullname='Ed Jones', nickname='edsnickname')
    session.add(ed_user)
    session.commit()
    print(ed_user.id)
    result = engine.execute("select * from users")
    for row in result:
        print(row)
    

    对比schema和orm的差异,可以得到下表:

    schema方式 orm方式
    class DeclarativeMeta(type):
        def __init__(cls, classname, bases, dict_):
            if "_decl_class_registry" not in cls.__dict__:
                _as_declarative(cls, classname, cls.__dict__)
            type.__init__(cls, classname, bases, dict_)
        def __setattr__(cls, key, value):
            _add_attribute(cls, key, value)
        def __delattr__(cls, key):
            _del_attribute(cls, key)
    def declarative_base(
        bind=None,
        metadata=None,
        mapper=None,
        cls=object,
        name="Base",
        constructor=_declarative_constructor,
        class_registry=None,
        metaclass=DeclarativeMeta,
        # 创建metadata
        lcl_metadata = metadata or MetaData()
        if class_registry is None:
            class_registry = weakref.WeakValueDictionary()
        bases = not isinstance(cls, tuple) and (cls,) or cls
        class_dict = dict(
            _decl_class_registry=class_registry, metadata=lcl_metadata
        # 构造函数
        if constructor:
            class_dict["__init__"] = constructor
        if mapper:
            class_dict["__mapper_cls__"] = mapper
        # class-meta
        return metaclass(name, bases, class_dict)
    

    关于如何动态创建类,在小技巧中进行介绍。declarative_base主要定义了Model类的几个特性:

  • Model类的构造函数__init__使用_declarative_constructor
  • Model类的子类在构造的时候会调用_as_declarative
  • model对象会使用_add_attribute进行赋值
  • 先从构造函数_declarative_constructor开始:

    def _declarative_constructor(self, **kwargs):
        cls_ = type(self)
        for k in kwargs:
            if not hasattr(cls_, k):
                raise TypeError(
                    "%r is an invalid keyword argument for %s" % (k, cls_.__name__)
            setattr(self, k, kwargs[k])
    _declarative_constructor.__name__ = "__init__"
    

    看起来非常简单,但是这里做了一个类和对象实例之间的校验转换。我们先看一段演示代码:

    class DummyModel(object):
        name = ["dummy_model"]  # 引用类型
    a = DummyModel()
    b = DummyModel()
    assert id(a.name) == id(b.name) == id(DummyModel.name)
    a.name.append("a")
    assert id(a.name) == id(b.name) == id(DummyModel.name)
    

    DummyModel的类属性name和a对象的name属性都是同一个引用。如果使用Model类:

    Model = declarative_base()
    class UserModel(Model):
        __tablename__ = 'user'  # 必须字段
        id = Column(Integer, primary_key=True)  # 必须字段
        name = Column(String)
    c = UserModel()
    c.name = "c"
    d = UserModel()
    d.name = "d"
    # 注意并不是Column
    assert isinstance(UserModel.name, InstrumentedAttribute)
    assert isinstance(c.name, str)
    assert d.name == "d"
    assert id(c.name) != id(d.name) != id(UserModel.name)
    

    可以发现UserModel的类属性name和d对象的name属性完全不一样,类定义的是Cloumn(InstrumentedAttribute),对象变成了str。这个就是orm模型的特性之一,Model是定义格式模版,对象实例化后转化为普通数据。

    Model的另外一个功能是隐式创建Table对象,在_as_declarative函数中通过_MapperConfig实现

    class _MapperConfig(object):
        def setup_mapping(cls, cls_, classname, dict_):
            cfg_cls = _MapperConfig
            cfg_cls(cls_, classname, dict_)
        def __init__(self, cls_, classname, dict_):
            self._setup_table()
        def _setup_table(self):
            table_cls = Table
            args, table_kw = (), {}
            if table_args:
                if isinstance(table_args, dict):
                    table_kw = table_args
                elif isinstance(table_args, tuple):
                    if isinstance(table_args[-1], dict):
                        args, table_kw = table_args[0:-1], table_args[-1]
                    else:
                        args = table_args
            autoload = dict_.get("__autoload__")
            if autoload:
                table_kw["autoload"] = True
            cls.__table__ = table = table_cls(
                tablename,
                cls.metadata,
                *(tuple(declared_columns) + tuple(args)),
                **table_kw
    

    而Column是通过下面的函数实现:

    def _add_attribute(cls, key, value):
        if "__mapper__" in cls.__dict__:
            if isinstance(value, Column):
                _undefer_column_name(key, value)
                cls.__table__.append_column(value)
                cls.__mapper__.add_property(key, value)
        else:
            type.__setattr__(cls, key, value)
    

    Model通过上面的方式,隐式创建了Schema(Table),实际使用过程中只需要使用Model类,不用关注Schema的定义。

    session的源码由于篇幅和时间有限,留待以后再行分析

    sqlalchemy可以在低层次上提供了sql语句的方式使用;在次层次上提供定义schema方式使用;在高层次上提供orm的实现,让应用可以根据项目的特点自主选择不同层级的API。

    使用schema时候,主要使用Metadata,Table和Column等定义Schema数据结构,使用编译器自动将schema转换成合法的sql语句。

    使用orm的时候,则是创建特定的数据模型,模型对象会隐式创建schema,通过session方式进行数据访问。

    最后再回顾一下sqlalchemy的架构图:

    sqlalchemy中提供了一个动态创建类的方式,主要在declarative_base和DeclarativeMeta中实现。我参考这个实现方式做了一个类工厂:

    class DeclarativeMeta(type):
        def __init__(cls, klass_name, bases, dict_):
            print("class_init", klass_name, bases, dict_)
            type.__init__(cls, klass_name, bases, dict_)
    def get_attr(self, key):
        print("getattr", self, key)
        return self.__dict__[key]
    def constructor(self, *args, **kwargs):
        print("constructor", self, args, kwargs)
        for k, v in kwargs.items():
            setattr(self, k, v)
    def dynamic_class(name):
        class_dict = {
            "__init__": constructor,
            "__getattr__": get_attr
        return DeclarativeMeta(name, (object,), class_dict)
    DummyModel = dynamic_class("Dummy")
    dummy = DummyModel(1, name="hello", age=18)
    print(dummy, type(dummy), dummy.name, dummy.age)
    # class_init Dummy (<class 'object'>,) {'__init__': <function test_dynamic_class.<locals>.constructor at 0x7f898827ef70>, '__getattr__': <function test_dynamic_class.<locals>.get_attr at 0x7f89882105e0>}
    # constructor <sample.Dummy object at 0x7f89882a5820> (1,) {'name': 'hello', 'age': 18}
    # <sample.Dummy object at 0x7f89882a5820> <class 'sample.Dummy'> hello 18
    

    示例中我动态创建了一个DummyModel类,type(dummy)可以看到,这个类名是 Dummy。这个类可以的构造函数可以接受name和age两个属性。这种创建方式和collections.namedtuple有点类似。

    sqlalchemy的源码非常复杂,前前后后一共准备了一个月,形成的2篇文档仅仅涉及核心流程和用法,细节部分缺失较多,以后有机会还需要继续阅读。在这一个月中,克服了工作较忙,没有时间写稿的烦躁;克服了阅读进入困境,一度想放弃的心理障碍;克服了deadline临近,文稿还只是一个雏形,使用存稿顶替的羞愧;克服了笔记软件故障,写完的文稿丢失,完全重写的懊恼。战胜这些困难,最终还是得以完成,心理上有大满足。当然最大的收获还是对ORM中间件有了初步的了解,也希望梳理的ORM流程对大家有一定的帮助,如果获得大家的支持会更加满意♥️。

    最后,欢迎加下面的微信和我互动交流,一起进阶: