添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Classes class cv::BackgroundSubtractor Base class for background/foreground segmentation. : More...
class cv::BackgroundSubtractorKNN K-nearest neighbours - based Background/Foreground Segmentation Algorithm . More...
class cv::BackgroundSubtractorMOG2 Gaussian Mixture-based Background/Foreground Segmentation Algorithm . More...
Functions Ptr < BackgroundSubtractorKNN > cv::createBackgroundSubtractorKNN (int history=500, double dist2Threshold=400.0, bool detectShadows=true)  Creates KNN Background Subtractor.
Ptr < BackgroundSubtractorMOG2 > cv::createBackgroundSubtractorMOG2 (int history=500, double varThreshold=16, bool detectShadows=true)  Creates MOG2 Background Subtractor.

Function Documentation

createBackgroundSubtractorKNN()

Python:
cv.createBackgroundSubtractorKNN( [, history[, dist2Threshold[, detectShadows]]] ) -> retval

#include < opencv2/video/background_segm.hpp >

Creates KNN Background Subtractor.

Parameters
historyLength of the history. dist2ThresholdThreshold on the squared distance between the pixel and the sample to decide whether a pixel is close to that sample. This parameter does not affect the background update. detectShadowsIf true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.
Python:
cv.createBackgroundSubtractorMOG2( [, history[, varThreshold[, detectShadows]]] ) -> retval

#include < opencv2/video/background_segm.hpp >

Creates MOG2 Background Subtractor.

Parameters
historyLength of the history. varThresholdThreshold on the squared Mahalanobis distance between the pixel and the model to decide whether a pixel is well described by the background model. This parameter does not affect the background update. detectShadowsIf true, the algorithm will detect shadows and mark them. It decreases the speed a bit, so if you do not need this feature, set the parameter to false.