背景
显而易见的方案就是实现一个 python 版本的语法解析器来支持各种语法,有以下方案
综上,采用方案 1
由于后端使用的 django 框架,根据数据库的不同以及 orm 的不同,操作数据库一般有 3 种形式
结合业务,只需要实现 1, 2,主要功能如下
原生 postgres sql 查询
utils/pg_sql_utils.py
import re
from pydash import py_
def replace_dashes(match):
result = match.group()
first_char = ''
if result.startswith('-'):
first_char = '-'
result = result[1:]
return first_char + re.sub(r'(?<!\\)-', r'\-', result)
def parse_sql(common_expression, like_expression, sql):
# () - , | 分别代表左右括号,非,且,或,优先级 () > - > , > |,如果要搜索的 label 带有上述 5 种字符,可以用 \ 转义,非开头的 - 不需要转义
sql = sql.strip()
if not sql:
return ''
# 预处理,将筛选出 - 开头的匹配项,然后对匹配项里面除了开头的 - 以外的 - 替换为 \-,最后将替换的结果拼接到原字符串
# 就是将下面的 [^()|,-])+ 改为 [^()|,])+,在这里处理替换 - 开头的情况,即将剩余的 - 替换为 \-
pattern = r'((?:\\[()|,-])|[^()|,])+'
sql = re.sub(pattern, replace_dashes, sql)
print('sql:', sql)
import ply.lex as lex
import ply.yacc as yacc
# 定义词法分析器的词法规则
tokens = ( # noqa: F841
'LPAREN',
'RPAREN',
'OR',
'AND',
'NOT',
'TERM',
t_LPAREN = r'\(' # noqa: F841
t_RPAREN = r'\)' # noqa: F841
t_OR = r'\|' # noqa: F841
t_AND = r',' # noqa: F841
t_NOT = r'-' # noqa: F841
def t_TERM(t):
# 匹配以 ()|,- 的分割的连续字符,但是要忽略转义字符 \,如 \- 表示匹配 -
r'((?:\\[()|,-])|[^()|,-])+'
# 去掉转义字符 \
if t.value.startswith('\%'):
t.value = '\%' + re.sub(r'\\([()|,\-%])', r'\1', t.value[2:])
else:
t.value = re.sub(r'\\([()|,\-%])', r'\1', t.value)
return t
# 忽略空格和制表符
t_ignore = ' \t' # noqa: F841
# 错误处理
def t_error(t):
raise TypeError("Unknown text '%s'" % (py_.get(t, 'value'),))
# 构建词法分析器
lexer = lex.lex()
# 确定运算符的优先级
precedence = ( # noqa: F841
('left', 'OR'),
('left', 'AND'),
('right', 'NOT')
# 定义语法分析器的语法规则
def p_expression_group(p):
'''expression : LPAREN expression RPAREN'''
p[0] = f'({p[2]})'
def p_expression_or(p):
'''expression : expression OR expression'''
p[0] = f'{p[1]} OR {p[3]}'
def p_expression_and(p):
'''expression : expression AND expression'''
p[0] = f'{p[1]} AND {(p[3])}'
def p_expression_not(p):
'''expression : NOT expression'''
p[0] = f'NOT {p[2]}'
def p_expression_term(p):
'''expression : TERM'''
if p[1].startswith('%'):
p[0] = like_expression.format(
value=p[1][1:])
else:
if p[1].startswith('\%'):
p[1] = p[1][1:]
p[0] = common_expression.format(
value=p[1])
def p_error(p):
raise SyntaxError(
f"Syntax error in input! Text is {sql}, Token is {py_.get(p, 'value')}")
# 构建语法分析器
parser = yacc.yacc()
result = parser.parse(sql, lexer=lexer)
return result
if __name__ == '__main__':
common_expression = "labels::TEXT[] @> ARRAY ['{value}']"
like_expression = "labels::TEXT LIKE '%{value}%'"
print(
parse_sql(common_expression, like_expression, 'a|-直行路口,-free-,\,\(\)\|space专项,(b|c),(d,e),%3434,\%3434'))
print(
parse_sql(common_expression, like_expression, '-ego\-turn\-right,ego-turn\-right,ego-turn-right,v4.0.4-f30-ota31-pro,v4.0.4\-f30\-ota31\-pro'))
sql: a|-直行路口,-free\-,\,\(\)\|space专项,(b|c),(d,e),%3434,\%3434
labels::TEXT[] @> ARRAY ['a'] OR NOT labels::TEXT[] @> ARRAY ['直行路口'] AND NOT labels::TEXT[] @> ARRAY ['free-'] AND labels::TEXT[] @> ARRAY [',()|space专项'] AND (labels::TEXT[] @> ARRAY ['b'] OR labels::TEXT[] @> ARRAY ['c']) AND (labels::TEXT[] @> ARRAY ['d'] AND labels::TEXT[] @> ARRAY ['e']) AND labels::TEXT LIKE '%3434%' AND labels::TEXT[] @> ARRAY ['%3434']
sql: -ego\-turn\-right,ego\-turn\-right,ego\-turn\-right,v4.0.4\-f30\-ota31\-pro,v4.0.4\-f30\-ota31\-pro
NOT labels::TEXT[] @> ARRAY ['ego-turn-right'] AND labels::TEXT[] @> ARRAY ['ego-turn-right'] AND labels::TEXT[] @> ARRAY ['ego-turn-right'] AND labels::TEXT[] @> ARRAY ['v4.0.4-f30-ota31-pro'] AND labels::TEXT[] @> ARRAY ['v4.0.4-f30-ota31-pro']
django Q 对象查询
utils/q_sql_utils.py
import re
from pydash import py_
from django.db.models import Q
def replace_dashes(match):
result = match.group()
first_char = ''
if result.startswith('-'):
first_char = '-'
result = result[1:]
return first_char + re.sub(r'(?<!\\)-', r'\-', result)
def parse_q(common_expression, like_expression, sql):
# () - , | 分别代表左右括号,非,且,或,优先级 () > - > , > |,如果要搜索的 label 带有上述 5 种字符,可以用 \ 转义,非开头的 - 不需要转义
sql = sql.strip()
if not sql:
return ''
# 预处理,将筛选出 - 开头的匹配项,然后对匹配项里面除了开头的 - 以外的 - 替换为 \-,最后将替换的结果拼接到原字符串
# 就是将下面的 [^()|,-])+ 改为 [^()|,])+,在这里处理替换 - 开头的情况,即将剩余的 - 替换为 \-
pattern = r'((?:\\[()|,-])|[^()|,])+'
sql = re.sub(pattern, replace_dashes, sql)
print('sql:', sql)
import ply.lex as lex
import ply.yacc as yacc
# 定义词法分析器的词法规则
tokens = ( # noqa: F841
'LPAREN',
'RPAREN',
'OR',
'AND',
'NOT',
'TERM',
t_LPAREN = r'\(' # noqa: F841
t_RPAREN = r'\)' # noqa: F841
t_OR = r'\|' # noqa: F841
t_AND = r',' # noqa: F841
t_NOT = r'-' # noqa: F841
def t_TERM(t):
# 匹配以 ()|,- 的分割的连续字符,但是要忽略转义字符 \,如 \- 表示匹配 -
r'((?:\\[()|,-])|[^()|,-])+'
# 去掉转义字符 \
if t.value.startswith('\%'):
t.value = '\%' + re.sub(r'\\([()|,\-%])', r'\1', t.value[2:])
else:
t.value = re.sub(r'\\([()|,\-%])', r'\1', t.value)
return t
# 忽略空格和制表符
t_ignore = ' \t' # noqa: F841
# 错误处理
def t_error(t):
raise TypeError("Unknown text '%s'" % (py_.get(t, 'value'),))
# 构建词法分析器
lexer = lex.lex()
# 确定运算符的优先级
precedence = ( # noqa: F841
('left', 'OR'),
('left', 'AND'),
('right', 'NOT')
# 定义语法分析器的语法规则
def p_expression_group(p):
'''expression : LPAREN expression RPAREN'''
p[0] = (p[2])
def p_expression_or(p):
'''expression : expression OR expression'''
p[0] = Q(p[1]) | Q(p[3])
def p_expression_and(p):
'''expression : expression AND expression'''
p[0] = Q(p[1]) & Q(p[3])
def p_expression_not(p):
'''expression : NOT expression'''
p[0] = ~Q(p[2])
def p_expression_term(p):
'''expression : TERM'''
if p[1].startswith('%'):
p[0] = Q(**like_expression(p[1][1:]))
else:
if p[1].startswith('\%'):
p[1] = p[1][1:]
p[0] = Q(**common_expression(p[1]))
def p_error(p):
raise SyntaxError(
f"Syntax error in input! Text is {sql}, Token is {py_.get(p, 'value')}")
# 构建语法分析器
parser = yacc.yacc()
result = parser.parse(sql, lexer=lexer)
return result
if __name__ == '__main__':
def common_expression(value): return {'labels__contains': [value]}
def like_expression(value): return {'labels__regex': r'%s' % value}
print(
parse_q(common_expression, like_expression, 'a|-直行路口,-free-,\,\(\)\|space专项,(b|c),(d,e),%3434,\%3434'))
print(
parse_q(common_expression, like_expression, '-ego\-turn\-right,ego-turn\-right,ego-turn-right,v4.0.4-f30-ota31-pro,v4.0.4\-f30\-ota31\-pro'))
sql: a|-直行路口,-free\-,\,\(\)\|space专项,(b|c),(d,e),%3434,\%3434
(OR: (AND: ('labels__contains', ['a'])), (AND: (AND: (AND: (AND: (AND: (AND: (NOT (AND: (AND: ('labels__contains', ['直行路口'])))), (NOT (AND: (AND: ('labels__contains', ['free-']))))), (AND: ('labels__contains', [',()|space专项']))), (OR: (AND: ('labels__contains', ['b'])), (AND: ('labels__contains', ['c'])))), (AND: (AND: ('labels__contains', ['d'])), (AND: ('labels__contains', ['e'])))), (AND: ('labels__regex', '3434'))), (AND: ('labels__contains', ['%3434']))))
sql: -ego\-turn\-right,ego\-turn\-right,ego\-turn\-right,v4.0.4\-f30\-ota31\-pro,v4.0.4\-f30\-ota31\-pro
(AND: (AND: (AND: (AND: (NOT (AND: (AND: ('labels__contains', ['ego-turn-right'])))), (AND: ('labels__contains', ['ego-turn-right']))), (AND: ('labels__contains', ['ego-turn-right']))), (AND: ('labels__contains', ['v4.0.4-f30-ota31-pro']))), (AND: ('labels__contains', ['v4.0.4-f30-ota31-pro'])))