添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Databricks Snowflake Example Data analysis with Azure Synapse Stream Kafka data to Cassandra and HDFS Master Real-Time Data Processing with AWS Build Real Estate Transactions Pipeline Data Modeling and Transformation in Hive Deploying Bitcoin Search Engine in Azure Project Flight Price Prediction using Machine Learning Machine Learning MLOps Computer Vision Deep Learning Apache Spark Apache Hadoop Browse all Data Science Projects Show all Projects Browse all Big Data Projects Show all Projects Browse all Hands on Labs Browse all Learning Paths

Explain JSON functions in PySpark in Databricks

This recipe explains what JSON functions in PySpark in Databricks
Get access to Big Data projects View all Big Data projects

Recipe Objective - Explain JSON functions in PySpark in Databricks?

The JSON functions in Apache Spark are popularly used to query or extract elements from the JSON string of the DataFrame column by the path and further convert it to the struct, map type e.t.c. The from_json() function in PySpark is converting the JSON string into the Struct type or Map type. The to_json() function in PySpark is defined as to converts the MapType or Struct type to JSON string. The json_tuple() function in PySpark is defined as extracting the Data from JSON and then creating them as the new columns. The get_json_object() function in PySpark is defined as removing the JSON element from the JSON string based on the JSON path specified. The schema_of_json() function is determined to create the JSON string schema string.

Learn Spark SQL for Relational Big Data Procesing

Table of Contents

  • Recipe Objective - Explain JSON functions in PySpark in Databricks?
  • System Requirements
  • Implementing the JSON functions in Databricks in PySpark
  • Apache Spark (3.1.1 version)
  • This recipe explains JSON functions and how to perform them in PySpark.

    Implementing the JSON functions in Databricks in PySpark

    # Importing packages
    import pyspark
    from pyspark.sql import SparkSession, Row
    from pyspark.sql.types import MapType, StringType
    from pyspark.sql.functions import from_json, to_json, col
    from pyspark.sql.functions import json_tuple, get_json_object
    from pyspark.sql.functions import schema_of_json, lit

    The Sparksession, Row, MapType, StringType, from_json, to_json, col, json_tuple, get_json_object, schema_of_json, lit packages are imported in the environment so as to demonstrate dense_rank and percent_rank window functions in PySpark.

    # Implementing the JSON functions in Databricks in PySpark
    spark = SparkSession.builder.appName('PySpark JSON').getOrCreate()
    Sample_Json_String = """{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""
    dataframe = spark.createDataFrame([(1, Sample_Json_String)],["id","value"])
    dataframe.show(truncate=False)
    # Using from_json() function
    dataframe2 = dataframe.withColumn("value", from_json(dataframe.value,MapType(StringType(), StringType())))
    dataframe2.printSchema()
    dataframe2.show(truncate=False)
    # Using to_json() function
    dataframe2.withColumn("value", to_json(col("value"))) \
    .show(truncate=False)
    # Using json_tuple() function
    dataframe.select(col("id"),json_tuple(col("value"),"Zipcode","ZipCodeType","City")) \
    .toDF("id","Zipcode","ZipCodeType","City") \
    .show(truncate=False)
    # Using get_json_object() function
    dataframe.select(col("id"), get_json_object(col("value"),"$.ZipCodeType").alias("ZipCodeType")) \
    .show(truncate=False)
    # Using schema_of_json() function
    Schema_Str = spark.range(1) \
    .select(schema_of_json(lit("""{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""))) \
    .collect()[0][0]
    print(Schema_Str)

    The "dataframe" value is created in which the Sample_Json_String is defined. Using the from_json() function, it converts JSON string to the Map key-value pair and defining "dataframe2" value. The to_json() function converts the DataFrame columns MapType or Struct type to the JSON string. The json_tuple() function returns the query or extracts the present elements from the JSON column and creates the new columns. The get_json_object() function extracts the JSON string based on the path from the JSON column. The schema_of_json() function creates the schema string from the JSON string column.

    Python Projects for Data Science
    Data Science Projects in R
    Machine Learning Projects for Beginners
    Deep Learning Projects
    Neural Network Projects
    Tensorflow Projects
    NLP Projects
    Kaggle Projects
    IoT Projects
    Big Data Projects
    Hadoop Real-Time Projects Examples
    Spark Projects
    Data Analytics Projects for Students
    Data Science Projects for Beginners
    Machine Learning Engineer
    Machine Learning Projects for Beginners
    Datasets
    Pandas Dataframe
    Machine Learning Algorithms
    Regression Analysis
    MNIST Dataset
    Data Science Interview Questions
    Python Data Science Interview Questions
    Spark Interview Questions
    Hadoop Interview Questions
    Data Analyst Interview Questions
    Machine Learning Interview Questions
    AWS vs Azure
    Hadoop Architecture
    Spark Architecture
  • Walmart Sales Forecasting Data Science Project
  • BigMart Sales Prediction ML Project
  • Music Recommender System Project
  • Credit Card Fraud Detection Using Machine Learning
  • Resume Parser Python Project for Data Science
  • Time Series Forecasting Projects
  • Twitter Sentiment Analysis Project
  • Credit Score Prediction Machine Learning
  • Retail Price Optimization Algorithm Machine Learning
  • Store Item Demand Forecasting Deep Learning Project
  • Human Activity Recognition ML Project
  • Visualize Website Clickstream Data
  • Handwritten Digit Recognition Code Project
  • Anomaly Detection Projects
  • PySpark Data Pipeline Project
  • Machine Learning Projects for Beginners with Source Code
  • Data Science Projects for Beginners with Source Code
  • Big Data Projects for Beginners with Source Code
  • IoT Projects for Beginners with Source Code
  • Data Analyst vs Data Scientist
  • Data Science Interview Questions and Answers
  • Hadoop Interview Questions and Answers
  • Spark Interview Questions and Answers
  • AWS vs Azure
  • Types of Analytics
  • Hadoop Architecture
  • Spark Architecture
  • Machine Learning Algorithms
  • Data Partitioning in Spark
  • Datasets for Machine Learning
  • Big Data Tools Comparison
  • Compare The Best Big Data Tools
  • Search for a Value in Pandas DataFrame
  • Pandas Create New Column based on Multiple Condition
  • LSTM vs GRU
  • Plot ROC Curve in Python
  • Python Upload File to Google Drive
  • Optimize Logistic Regression Hyper Parameters
  • Drop Out Highly Correlated Features in Python
  • How to Split Data and Time in Python
  • Pandas Replace Multiple Values
  • Convert Categorical Variable to Numeric Pandas
  • Classification Report Python
  • RandomizedSearchCV
  • Grid Search Decision Tree
  • Catboost Hyperparameter Tuning
  • Pandas Normalize Column
  • Apache Spark Tutorial
  • Evaluate Performance Metrics for Machine Learning Models
  • K-Means Clustering Tutorial
  • Sqoop Tutorial
  • R Import Data From Website
  • Install Spark on Linux
  • Data.Table Packages in R
  • Apache ZooKeeper Hadoop Tutorial
  • Hadoop Tutorial
  •