添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
void PBOOpengl::initPbo() {

    int imgByteSize = imageWidth * imageHeight * 4; // RGBA

    glGenBuffers(1, &uploadPboId);
    // 绑定pbo
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, uploadPboId);
    // 设置pbo内存大小
    // 这一步十分重要,第2个参数指定了这个缓冲区的大小,单位是字节,一定要注意
    //  然后第3个参数是初始化用的数据,如果你传个内存指针进去,这个函数就会把你的
    //  数据复制到缓冲区里,我们这里一开始并不需要什么数据,所以传个nullptr就行了
    glBufferData(GL_PIXEL_UNPACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
    // 解除绑定
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);

    glGenBuffers(1, &downloadPboId);
    glBindBuffer(GL_PIXEL_PACK_BUFFER, downloadPboId);
    glBufferData(GL_PIXEL_PACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
    // 解除绑定
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
    LOGD("uploadPboId:%d---downloadPboId:%d---imgByteSize:%d", uploadPboId, downloadPboId,
         imgByteSize);
}

上面的代码创建了两个PBO,其中 uploadPboId 用于纹理上传, downloadPboId 用于纹理下载。创建好PBO之后然后使用两个PBO专用的令牌进行绑定,之后就调用 glBufferData 给PBO分配缓冲区,当然,你也可以在使用的时候先进行绑定,然后重新调用 glBufferData 分配新的缓冲区。

  1. Pbo上传纹理

所谓上传纹理是值将纹理数据从CPU传递到OpenGL,使用Pbo上传纹理时需要先使用令牌 GL_PIXEL_UNPACK_BUFFER 绑定对应的PBO,然后才行使用PBO的缓冲区:

// 单个PBO测试
void PBOOpengl::setPixel(void *data, int width, int height, int length) {
    LOGD("texture setPixel");
    imageWidth = width;
    imageHeight = height;
    // Pbo初始化
    initPbo();

    glGenTextures(1, &imageTextureId);

    // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
    // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
//    glActiveTexture(GL_TEXTURE0);
//    glUniform1i(textureSampler, 0);

// 例如,一样的
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);
    
    // 本文首发于微信公总号号:思想觉悟
    // 更多关于音视频、FFmpeg、Opengl、C++的原创文章请关注微信公众号:思想觉悟

    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);
    // 为当前绑定的纹理对象设置环绕、过滤方式
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    // pixels参数传递空,后面会通过pbo更新纹理数据
    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);

    // 生成mip贴图
    glGenerateMipmap(GL_TEXTURE_2D);

    int dataSize = width * height * 4;
    // 使用Pbo
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, uploadPboId);
    // 将纹理数据拷贝进入缓冲区
    GLubyte *bufPtr = (GLubyte *) glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0,
                                                   dataSize,
                                                   GL_MAP_WRITE_BIT);
    if (bufPtr) {
        memcpy(bufPtr, data, static_cast<size_t>(dataSize));
        glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
    }
    // 将pbo缓冲区中的数据拷贝到纹理,调用 glTexSubImage2D 后立即返回,不影响 CPU 时钟周期
    // 这个函数会判断 GL_PIXEL_UNPACK_BUFFER 这个地方有没有绑定一个缓冲区
    //   如果有,就从这个缓冲区读取数据,而不是data参数指定的那个内存
    // 这样glTexSubImage2D就会从我们的缓冲区中读取数据了
    // 这里为什么要用glTexSubImage2D呢,因为如果用glTexImage2D,glTexImage2D会销毁纹理内存重新申请,glTexSubImage2D就仅仅只是更新纹理中的数据,这就提高了速度,并且优化了显存的利用率
    glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
    // Pbo解除
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
    // 解绑定
    glBindTexture(GL_TEXTURE_2D, 0);
}

注释已经很详细了,就不多解析了,还是看不懂的私聊交流呗…

  1. Pbo下载纹理

所谓上传纹理是值将纹理数据从OpenGL中读取回CPU,与上传纹理一样,下载纹理也是需要先使用令牌绑定PBO才能使用,下载纹理使用的令牌是 GL_PIXEL_PACK_BUFFER 。 下面的代码作用是将Opengl的渲染结果使用PBO读取出来:

// 单PBO读取测试
void PBOOpengl::readPixel(uint8_t **data,int *width,int *height) {

    *width = eglHelper->viewWidth;
    *height = eglHelper->viewHeight;
    int dataSize = eglHelper->viewWidth * eglHelper->viewHeight * 4;
    *data = new uint8_t[dataSize];
    // 方法一 正常的glReadPixels读取 最简单
//    glReadPixels(0, 0, eglHelper->viewWidth, eglHelper->viewHeight,
//                 GL_RGBA, GL_UNSIGNED_BYTE, *data);

    // 方法二 pbo读取
    // 首先我们要把缓冲区绑定到 GL_PIXEL_PACK_BUFFER 这个地方
    glBindBuffer(GL_PIXEL_PACK_BUFFER, downloadPboId);
    // 重新分配一下空间 如果必要,这里就懒得判断了
    glBufferData(GL_PIXEL_PACK_BUFFER, dataSize, nullptr, GL_STREAM_DRAW);
    // 这个函数会判断 GL_PIXEL_PACK_BUFFER 这个地方有没有绑定一个缓冲区,如果有,那就把数据写入到这个缓冲区里
    // 前4个参数就是要读取的屏幕区域,不多解释
    //  格式是RGB,类型是BYTE,每个像素1字节
    // 如果GL_PIXEL_PACK_BUFFER有绑定缓冲区,最后一个参数就作为偏移值来使用,传nullptr就行
    glReadPixels(0, 0, *width, *height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    // 好了我们已经成功把屏幕的像素数据复制到了缓冲区里

    // 这时候,你可以用 glMapBuffer 得到缓冲区的内存指针,来读取里面的像素数据,保存到图片文件
    // 注意glMapBuffer的第1个参数不一定要是GL_PIXEL_PACK_BUFFER,你可以把缓冲区绑定到比如上面init函数的GL_ARRAY_BUFFER
    //  然后这里也传GL_ARRAY_BUFFER,由于懒得再绑定一次,就接着用上面绑定的GL_PIXEL_PACK_BUFFER吧
    GLubyte *mapPtr = static_cast<GLubyte *>(glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dataSize,
                                                              GL_MAP_READ_BIT));
    if (nullptr != mapPtr)
    {
        LOGD("readPixel 数据拷贝");
        // 拷贝数据
        memcpy(*data,mapPtr,dataSize);
        // 解除Map
        glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
    } else{
        LOGD("readPixel glMapBufferRange null");
    }
    // 完事了把GL_PIXEL_PACK_BUFFER这个地方的缓冲区解绑掉,以免别的函数误操作
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
}

其实无论有没有使用PBO都是使用的函数 glReadPixels 进行读取,但是他们的参数却是不一样的,你发现细节了吗?如果是在PBO模式下使用 glReadPixels ,则会自动将结果发送到PBO的缓冲区, 并不会像单独使用 glReadPixels 那样需要阻塞进行等待返回,因此效率就高了…

PBO的另一个优势是它还具备异步DMA(Direct Memory Access)传输,也正因为这个特性,使得在使用单个PBO的情况下,在一些机型上可能性能提升并不明显,所以通常需要两个PBO配合使用。

图片
双PBO上传纹理数据
图片
双PBO获取纹理数据

通过上面这两张图我们可以看到利用交替使用双PBO的方式可以将PBO的快速特性更进一步。

下面的代码展示了如何通过双PBO上传纹理和下载渲染结果:

使用双PBO上传纹理数据

// 双PBO测试
void PBOOpengl::setPixel(void *data, int width, int height, int length) {
    LOGD("texture setPixel  uploadPboIndex:%d",uploadPboIndex);
    imageWidth = width;
    imageHeight = height;
    // Pbo初始化
    initPboArray();

    if(imageTextureId == 0){

        glGenTextures(1, &imageTextureId);

        // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
        // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
//    glActiveTexture(GL_TEXTURE0);
//    glUniform1i(textureSampler, 0);

// 例如,一样的
        glActiveTexture(GL_TEXTURE2);
        glUniform1i(textureSampler, 2);

        // 绑定纹理
        glBindTexture(GL_TEXTURE_2D, imageTextureId);
        // 为当前绑定的纹理对象设置环绕、过滤方式
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        // pixels参数传递空,后面会通过pbo更新纹理数据
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);

        // 生成mip贴图
        glGenerateMipmap(GL_TEXTURE_2D);
    }

    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);

    int dataSize = width * height * 4;
    // 使用Pbo
    // 指针运算你要会一点呀
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, *(uploadPboIds + uploadPboIndex % NUM_PBO ));
    // 将纹理数据拷贝进入缓冲区
    GLubyte *bufPtr = (GLubyte *) glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0,
                                                   dataSize,
                                                   GL_MAP_WRITE_BIT);
    if (bufPtr) {
        memcpy(bufPtr, data, static_cast<size_t>(dataSize));
        glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
    }
    // 将pbo缓冲区中的数据拷贝到纹理,调用 glTexSubImage2D 后立即返回,不影响 CPU 时钟周期
    // 这个函数会判断 GL_PIXEL_UNPACK_BUFFER 这个地方有没有绑定一个缓冲区
    //   如果有,就从这个缓冲区读取数据,而不是data参数指定的那个内存
    // 这样glTexSubImage2D就会从我们的缓冲区中读取数据了
    // 这里为什么要用glTexSubImage2D呢,因为如果用glTexImage2D,glTexImage2D会销毁纹理内存重新申请,glTexSubImage2D就仅仅只是更新纹理中的数据,这就提高了速度,并且优化了显存的利用率
    glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
    // Pbo解除
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
    // 解绑定
    glBindTexture(GL_TEXTURE_2D, 0);
    // 索引自加
    uploadPboIndex++;
}

使用双PBO下载渲染结果:


// 双PBO读取测试
void PBOOpengl::readPixel(uint8_t **data,int *width,int *height) {

    *width = eglHelper->viewWidth;
    *height = eglHelper->viewHeight;
    int dataSize = eglHelper->viewWidth * eglHelper->viewHeight * 4;
    *data = new uint8_t[dataSize];

    // 首先我们要把缓冲区绑定到 GL_PIXEL_PACK_BUFFER 这个地方
    // 指针运算你要会一点呀
    glBindBuffer(GL_PIXEL_PACK_BUFFER, *(downloadPboIds + downloadPboIndex % NUM_PBO));
    // 重新分配一下空间
    glBufferData(GL_PIXEL_PACK_BUFFER, dataSize, nullptr, GL_STREAM_DRAW);
    // 这个函数会判断 GL_PIXEL_PACK_BUFFER 这个地方有没有绑定一个缓冲区,如果有,那就把数据写入到这个缓冲区里
    // 前4个参数就是要读取的屏幕区域,不多解释
    //  格式是RGB,类型是BYTE,每个像素1字节
    // 如果GL_PIXEL_PACK_BUFFER有绑定缓冲区,最后一个参数就作为偏移值来使用,传nullptr就行
    glReadPixels(0, 0, *width, *height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    // 好了我们已经成功把屏幕的像素数据复制到了缓冲区里

    // 这时候,你可以用 glMapBuffer 得到缓冲区的内存指针,来读取里面的像素数据,保存到图片文件
    // 注意glMapBuffer的第1个参数不一定要是GL_PIXEL_PACK_BUFFER,你可以把缓冲区绑定到比如上面init函数的GL_ARRAY_BUFFER
    //  然后这里也传GL_ARRAY_BUFFER,由于懒得再绑定一次,就接着用上面绑定的GL_PIXEL_PACK_BUFFER吧
    GLubyte *mapPtr = static_cast<GLubyte *>(glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dataSize,
                                                              GL_MAP_READ_BIT));
    if (nullptr != mapPtr)
    {
        LOGD("readPixel 数据拷贝");
        // 拷贝数据
        memcpy(*data,mapPtr,dataSize);
        // 解除Map
        glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
    } else{
        LOGD("readPixel glMapBufferRange null");
    }
    // 完事了把GL_PIXEL_PACK_BUFFER这个地方的缓冲区解绑掉,以免别的函数误操作
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
    // Pbo索引自加
    downloadPboIndex++;
}

下面我们使用双PBO上传纹理和双PBO下载实现一个纹理动态切换和下载渲染结果的小demo,完整代码如下:

PBOOpengl.h

#ifndef NDK_OPENGLES_LEARN_PBOOPENGL_H
#define NDK_OPENGLES_LEARN_PBOOPENGL_H

#include "BaseOpengl.h"

static const int NUM_PBO = 2;

class PBOOpengl: public BaseOpengl{

public:
    PBOOpengl();
    virtual ~PBOOpengl();
    // override要么就都写,要么就都不写,不要一个虚函数写override,而另外一个虚函数不写override,不然可能编译不过
    virtual void onDraw() override;
    virtual void setPixel(void *data, int width, int height, int length) override;
    virtual void readPixel(uint8_t **data,int *width,int *height) override;
private:
    void initPbo();
    void initPboArray();
    GLint positionHandle{-1};
    GLint textureHandle{-1};
    GLuint vbo{0};
    GLuint vao{0};
    GLuint ebo{0};
    // 本身图像纹理id
    GLuint imageTextureId{0};
    GLint textureSampler{-1};
    int imageWidth{0};
    int imageHeight{0};
    // 上传纹理的pbo
    GLuint uploadPboId{0};
    // cpu下载纹理的pbo
    GLuint downloadPboId{0};

    // 上传纹理的pbo
    GLuint *uploadPboIds{nullptr};
    // cpu下载纹理的pbo
    GLuint *downloadPboIds{nullptr};

    // Pbo 的索引,用于双PBO时
    int uploadPboIndex{0};
    int downloadPboIndex{0};

  // 本文首发于微信公总号号:思想觉悟
    // 更多关于音视频、FFmpeg、Opengl、C++的原创文章请关注微信公众号:思想觉悟
};


#endif //NDK_OPENGLES_LEARN_PBOOPENGL_H

PBOOpengl.cpp:

#include "PBOOpengl.h"

#include "../utils/Log.h"

// 顶点着色器
static const char *ver = "#version 300 esn"
                         "in vec4 aPosition;n"
                         "in vec2 aTexCoord;n"
                         "out vec2 TexCoord;n"
                         "void main() {n"
                         "  TexCoord = aTexCoord;n"
                         "  gl_Position = aPosition;n"
                         "}";

// 片元着色器
static const char *fragment = "#version 300 esn"
                              "precision mediump float;n"
                              "out vec4 FragColor;n"
                              "in vec2 TexCoord;n"
                              "uniform sampler2D ourTexture;n"
                              "void main()n"
                              "{n"
                              "    FragColor = texture(ourTexture, TexCoord);n"
                              "}";

const static GLfloat VERTICES_AND_TEXTURE[] = {
        0.5f, -0.5f, // 右下
        // 纹理坐标
        1.0f, 1.0f,
        0.5f, 0.5f, // 右上
        // 纹理坐标
        1.0f, 0.0f,
        -0.5f, -0.5f, // 左下
        // 纹理坐标
        0.0f, 1.0f,
        -0.5f, 0.5f, // 左上
        // 纹理坐标
        0.0f, 0.0f
};

// 真正的纹理坐标在图片的左下角
const static GLfloat FBO_VERTICES_AND_TEXTURE[] = {
        1.0f, -1.0f, // 右下
        // 纹理坐标
        1.0f, 0.0f,
        1.0f, 1.0f, // 右上
        // 纹理坐标
        1.0f, 1.0f,
        -1.0f, -1.0f, // 左下
        // 纹理坐标
        0.0f, 0.0f,
        -1.0f, 1.0f, // 左上
        // 纹理坐标
        0.0f, 1.0f
};

// 使用byte类型比使用short或者int类型节约内存
const static uint8_t indices[] = {
        // 注意索引从0开始!
        // 此例的索引(0,1,2,3)就是顶点数组vertices的下标,
        // 这样可以由下标代表顶点组合成矩形
        0, 1, 2, // 第一个三角形
        1, 2, 3  // 第二个三角形
};

PBOOpengl::PBOOpengl():uploadPboIds(nullptr),downloadPboIds(nullptr) {
    initGlProgram(ver, fragment);
    positionHandle = glGetAttribLocation(program, "aPosition");
    textureHandle = glGetAttribLocation(program, "aTexCoord");
    textureSampler = glGetUniformLocation(program, "ourTexture");
    LOGD("program:%d", program);
    LOGD("positionHandle:%d", positionHandle);
    LOGD("textureHandle:%d", textureHandle);
    LOGD("textureSample:%d", textureSampler);
    // VAO
    glGenVertexArrays(1, &vao);
    glBindVertexArray(vao);

    // vbo
    glGenBuffers(1, &vbo);
    glBindBuffer(GL_ARRAY_BUFFER, vbo);
    glBufferData(GL_ARRAY_BUFFER, sizeof(VERTICES_AND_TEXTURE), VERTICES_AND_TEXTURE,
                 GL_STATIC_DRAW);

    // stride 步长 每个顶点坐标之间相隔4个数据点,数据类型是float
    glVertexAttribPointer(positionHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float), (void *) 0);
    // 启用顶点数据
    glEnableVertexAttribArray(positionHandle);
    // stride 步长 每个颜色坐标之间相隔4个数据点,数据类型是float,颜色坐标索引从2开始
    glVertexAttribPointer(textureHandle, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(float),
                          (void *) (2 * sizeof(float)));
    // 启用纹理坐标数组
    glEnableVertexAttribArray(textureHandle);

    // EBO
    glGenBuffers(1, &ebo);
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
    glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

    // 这个顺序不能乱啊,先解除vao,再解除其他的,不然在绘制的时候可能会不起作用,需要重新glBindBuffer才生效
    // vao解除
    glBindVertexArray(0);
    // 解除绑定
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    // 解除绑定
    glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

    LOGD("program:%d", program);
    LOGD("positionHandle:%d", positionHandle);
    LOGD("colorHandle:%d", textureHandle);
}

void PBOOpengl::initPbo() {

    int imgByteSize = imageWidth * imageHeight * 4; // RGBA

    glGenBuffers(1, &uploadPboId);
    // 绑定pbo
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, uploadPboId);
    // 设置pbo内存大小
    // 这一步十分重要,第2个参数指定了这个缓冲区的大小,单位是字节,一定要注意
    //  然后第3个参数是初始化用的数据,如果你传个内存指针进去,这个函数就会把你的
    //  数据复制到缓冲区里,我们这里一开始并不需要什么数据,所以传个nullptr就行了
    glBufferData(GL_PIXEL_UNPACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
  // 本文首发于微信公总号号:思想觉悟
    // 更多关于音视频、FFmpeg、Opengl、C++的原创文章请关注微信公众号:思想觉悟
    glGenBuffers(1, &downloadPboId);
    glBindBuffer(GL_PIXEL_PACK_BUFFER, downloadPboId);
    glBufferData(GL_PIXEL_PACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
    // 解除绑定
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
    LOGD("uploadPboId:%d---downloadPboId:%d---imgByteSize:%d", uploadPboId, downloadPboId,
         imgByteSize);
}

void PBOOpengl::initPboArray() {
    int imgByteSize = imageWidth * imageHeight * 4; // RGBA
    if(nullptr == uploadPboIds){
        uploadPboIds = new GLuint[NUM_PBO];
        glGenBuffers(NUM_PBO, uploadPboIds);
        for (int i = 0; i < NUM_PBO; ++i) {
            // 绑定pbo
            glBindBuffer(GL_PIXEL_UNPACK_BUFFER, *(uploadPboIds + i));
            // 设置pbo内存大小
            // 这一步十分重要,第2个参数指定了这个缓冲区的大小,单位是字节,一定要注意
            //  然后第3个参数是初始化用的数据,如果你传个内存指针进去,这个函数就会把你的
            //  数据复制到缓冲区里,我们这里一开始并不需要什么数据,所以传个nullptr就行了
            glBufferData(GL_PIXEL_UNPACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
            glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
        }
    }

    if(nullptr == downloadPboIds){
        downloadPboIds = new GLuint[NUM_PBO];
        glGenBuffers(NUM_PBO, downloadPboIds);
        for (int i = 0; i < NUM_PBO; ++i) {
            // 绑定pbo
            glBindBuffer(GL_PIXEL_PACK_BUFFER, *(downloadPboIds + i));
            glBufferData(GL_PIXEL_PACK_BUFFER, imgByteSize, nullptr, GL_STREAM_DRAW);
            glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
        }
    }

}

PBOOpengl::~PBOOpengl() {
    glDeleteBuffers(1, &ebo);
    glDeleteBuffers(1, &vbo);
    glDeleteVertexArrays(1, &vao);
    if(nullptr != uploadPboIds){
        glDeleteBuffers(NUM_PBO,uploadPboIds);
        delete [] uploadPboIds;
        uploadPboIds = nullptr;
    }
  // 本文首发于微信公总号号:思想觉悟
    // 更多关于音视频、FFmpeg、Opengl、C++的原创文章请关注微信公众号:思想觉悟
    if(nullptr != downloadPboIds){
        glDeleteBuffers(NUM_PBO,downloadPboIds);
        delete [] downloadPboIds;
        downloadPboIds = nullptr;
    }
}

void PBOOpengl::onDraw() {

    // 绘制屏幕宽高
    glViewport(0, 0, eglHelper->viewWidth, eglHelper->viewHeight);

    // 绘制到屏幕
    // 清屏
    glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
    glClear(GL_COLOR_BUFFER_BIT);
    glUseProgram(program);

    // 激活纹理
    glActiveTexture(GL_TEXTURE2);
    glUniform1i(textureSampler, 2);

    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);

    // VBO与VAO配合绘制
    // 使用vao
    glBindVertexArray(vao);
    // 使用EBO
// 使用byte类型节省内存
    glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_BYTE, (void *) 0);
    glUseProgram(0);
    // vao解除绑定
    glBindVertexArray(0);

    // 禁用顶点
    glDisableVertexAttribArray(positionHandle);
    if (nullptr != eglHelper) {
        eglHelper->swapBuffers();
    }

    glBindTexture(GL_TEXTURE_2D, 0);
}
//
//// 单个PBO测试
//void PBOOpengl::setPixel(void *data, int width, int height, int length) {
//    LOGD("texture setPixel");
//    imageWidth = width;
//    imageHeight = height;
//    // Pbo初始化
//    initPbo();
//
//    glGenTextures(1, &imageTextureId);
//
//    // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
//    // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
////    glActiveTexture(GL_TEXTURE0);
////    glUniform1i(textureSampler, 0);
//
//// 例如,一样的
//    glActiveTexture(GL_TEXTURE2);
//    glUniform1i(textureSampler, 2);
//
//    // 绑定纹理
//    glBindTexture(GL_TEXTURE_2D, imageTextureId);
//    // 为当前绑定的纹理对象设置环绕、过滤方式
//    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
//    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
//    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
//    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
//    // pixels参数传递空,后面会通过pbo更新纹理数据
//    glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
//
//    // 生成mip贴图
//    glGenerateMipmap(GL_TEXTURE_2D);
//
//    int dataSize = width * height * 4;
//    // 使用Pbo
//    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, uploadPboId);
//    // 将纹理数据拷贝进入缓冲区
//    GLubyte *bufPtr = (GLubyte *) glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0,
//                                                   dataSize,
//                                                   GL_MAP_WRITE_BIT);
//    if (bufPtr) {
//        memcpy(bufPtr, data, static_cast<size_t>(dataSize));
//        glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
//    }
//    // 将pbo缓冲区中的数据拷贝到纹理,调用 glTexSubImage2D 后立即返回,不影响 CPU 时钟周期
//    // 这个函数会判断 GL_PIXEL_UNPACK_BUFFER 这个地方有没有绑定一个缓冲区
//    //   如果有,就从这个缓冲区读取数据,而不是data参数指定的那个内存
//    // 这样glTexSubImage2D就会从我们的缓冲区中读取数据了
//    // 这里为什么要用glTexSubImage2D呢,因为如果用glTexImage2D,glTexImage2D会销毁纹理内存重新申请,glTexSubImage2D就仅仅只是更新纹理中的数据,这就提高了速度,并且优化了显存的利用率
//    glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
//    // Pbo解除
//    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
//    // 解绑定
//    glBindTexture(GL_TEXTURE_2D, 0);
//}



// 双PBO测试
void PBOOpengl::setPixel(void *data, int width, int height, int length) {
    LOGD("texture setPixel  uploadPboIndex:%d",uploadPboIndex);
    imageWidth = width;
    imageHeight = height;
    // Pbo初始化
    initPboArray();

    if(imageTextureId == 0){

        glGenTextures(1, &imageTextureId);

        // 激活纹理,注意以下这个两句是搭配的,glActiveTexture激活的是那个纹理,就设置的sampler2D是那个
        // 默认是0,如果不是0的话,需要在onDraw的时候重新激活一下?
//    glActiveTexture(GL_TEXTURE0);
//    glUniform1i(textureSampler, 0);

// 例如,一样的
        glActiveTexture(GL_TEXTURE2);
        glUniform1i(textureSampler, 2);

        // 绑定纹理
        glBindTexture(GL_TEXTURE_2D, imageTextureId);
        // 为当前绑定的纹理对象设置环绕、过滤方式
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
        // pixels参数传递空,后面会通过pbo更新纹理数据
        glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);

        // 生成mip贴图
        glGenerateMipmap(GL_TEXTURE_2D);
    }

    // 绑定纹理
    glBindTexture(GL_TEXTURE_2D, imageTextureId);

    int dataSize = width * height * 4;
    // 使用Pbo
    // 指针运算你要会一点呀
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, *(uploadPboIds + uploadPboIndex % NUM_PBO ));
    // 将纹理数据拷贝进入缓冲区
    GLubyte *bufPtr = (GLubyte *) glMapBufferRange(GL_PIXEL_UNPACK_BUFFER, 0,
                                                   dataSize,
                                                   GL_MAP_WRITE_BIT);
    if (bufPtr) {
        memcpy(bufPtr, data, static_cast<size_t>(dataSize));
        glUnmapBuffer(GL_PIXEL_UNPACK_BUFFER);
    }
    // 将pbo缓冲区中的数据拷贝到纹理,调用 glTexSubImage2D 后立即返回,不影响 CPU 时钟周期
    // 这个函数会判断 GL_PIXEL_UNPACK_BUFFER 这个地方有没有绑定一个缓冲区
    //   如果有,就从这个缓冲区读取数据,而不是data参数指定的那个内存
    // 这样glTexSubImage2D就会从我们的缓冲区中读取数据了
    // 这里为什么要用glTexSubImage2D呢,因为如果用glTexImage2D,glTexImage2D会销毁纹理内存重新申请,glTexSubImage2D就仅仅只是更新纹理中的数据,这就提高了速度,并且优化了显存的利用率
    glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, nullptr);
    // Pbo解除
    glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0);
    // 解绑定
    glBindTexture(GL_TEXTURE_2D, 0);
    // 索引自加
    uploadPboIndex++;
}

//// 单PBO读取测试
//void PBOOpengl::readPixel(uint8_t **data,int *width,int *height) {
//
//    *width = eglHelper->viewWidth;
//    *height = eglHelper->viewHeight;
//    int dataSize = eglHelper->viewWidth * eglHelper->viewHeight * 4;
//    *data = new uint8_t[dataSize];
//    // 方法一 正常的glReadPixels读取 最简单
////    glReadPixels(0, 0, eglHelper->viewWidth, eglHelper->viewHeight,
////                 GL_RGBA, GL_UNSIGNED_BYTE, *data);
//
//    // 方法二 pbo读取
//    // 首先我们要把缓冲区绑定到 GL_PIXEL_PACK_BUFFER 这个地方
//    glBindBuffer(GL_PIXEL_PACK_BUFFER, downloadPboId);
//    // 重新分配一下空间
//    glBufferData(GL_PIXEL_PACK_BUFFER, dataSize, nullptr, GL_STREAM_DRAW);
//    // 这个函数会判断 GL_PIXEL_PACK_BUFFER 这个地方有没有绑定一个缓冲区,如果有,那就把数据写入到这个缓冲区里
//    // 前4个参数就是要读取的屏幕区域,不多解释
//    //  格式是RGB,类型是BYTE,每个像素1字节
//    // 如果GL_PIXEL_PACK_BUFFER有绑定缓冲区,最后一个参数就作为偏移值来使用,传nullptr就行
//    glReadPixels(0, 0, *width, *height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
//    // 好了我们已经成功把屏幕的像素数据复制到了缓冲区里
//
//    // 这时候,你可以用 glMapBuffer 得到缓冲区的内存指针,来读取里面的像素数据,保存到图片文件
//    // 注意glMapBuffer的第1个参数不一定要是GL_PIXEL_PACK_BUFFER,你可以把缓冲区绑定到比如上面init函数的GL_ARRAY_BUFFER
//    //  然后这里也传GL_ARRAY_BUFFER,由于懒得再绑定一次,就接着用上面绑定的GL_PIXEL_PACK_BUFFER吧
//    GLubyte *mapPtr = static_cast<GLubyte *>(glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dataSize,
//                                                              GL_MAP_READ_BIT));
//    if (nullptr != mapPtr)
//    {
//        LOGD("readPixel 数据拷贝");
//        // 拷贝数据
//        memcpy(*data,mapPtr,dataSize);
//        // 解除Map
//        glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
//    } else{
//        LOGD("readPixel glMapBufferRange null");
//    }
//    // 完事了把GL_PIXEL_PACK_BUFFER这个地方的缓冲区解绑掉,以免别的函数误操作
//    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
//}

// 双PBO读取测试
void PBOOpengl::readPixel(uint8_t **data,int *width,int *height) {

    *width = eglHelper->viewWidth;
    *height = eglHelper->viewHeight;
    int dataSize = eglHelper->viewWidth * eglHelper->viewHeight * 4;
    *data = new uint8_t[dataSize];

    // 首先我们要把缓冲区绑定到 GL_PIXEL_PACK_BUFFER 这个地方
    // 指针运算你要会一点呀
    glBindBuffer(GL_PIXEL_PACK_BUFFER, *(downloadPboIds + downloadPboIndex % NUM_PBO));
    // 重新分配一下空间
    glBufferData(GL_PIXEL_PACK_BUFFER, dataSize, nullptr, GL_STREAM_DRAW);
    // 这个函数会判断 GL_PIXEL_PACK_BUFFER 这个地方有没有绑定一个缓冲区,如果有,那就把数据写入到这个缓冲区里
    // 前4个参数就是要读取的屏幕区域,不多解释
    //  格式是RGB,类型是BYTE,每个像素1字节
    // 如果GL_PIXEL_PACK_BUFFER有绑定缓冲区,最后一个参数就作为偏移值来使用,传nullptr就行
    glReadPixels(0, 0, *width, *height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
    // 好了我们已经成功把屏幕的像素数据复制到了缓冲区里

    // 这时候,你可以用 glMapBuffer 得到缓冲区的内存指针,来读取里面的像素数据,保存到图片文件
    // 注意glMapBuffer的第1个参数不一定要是GL_PIXEL_PACK_BUFFER,你可以把缓冲区绑定到比如上面init函数的GL_ARRAY_BUFFER
    //  然后这里也传GL_ARRAY_BUFFER,由于懒得再绑定一次,就接着用上面绑定的GL_PIXEL_PACK_BUFFER吧
    GLubyte *mapPtr = static_cast<GLubyte *>(glMapBufferRange(GL_PIXEL_PACK_BUFFER, 0, dataSize,
                                                              GL_MAP_READ_BIT));
    if (nullptr != mapPtr)
    {
        LOGD("readPixel 数据拷贝");
        // 拷贝数据
        memcpy(*data,mapPtr,dataSize);
        // 解除Map
        glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
    } else{
        LOGD("readPixel glMapBufferRange null");
    }
    // 完事了把GL_PIXEL_PACK_BUFFER这个地方的缓冲区解绑掉,以免别的函数误操作
    glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);
    // Pbo索引自加
    downloadPboIndex++;
}

运行结果:

然而PBO还有一个非常坑的地方,经测试表明,在部分硬件上glMapBufferRange映射出来的Buffer拷贝极为耗时,可以高达30+ms,这对于音视频处理显然是不能接受的。通常,映射出来的是一个DirectByteBuffer,也是一个堆外内存(C内存),这部分内存本身只能通过Buffer.get(byte[])拷贝来拿到数据,但正常情况下只需要2-3ms。出现这种问题估计是硬件上留下的坑。 所以,在Android上使用PBO是有比较多的兼容性问题的,包括上面说的。正确使用PBO的方式是,首先判断是否支持PBO,如果支持,则还是先使用glReadPixels进行读取测试,记录平均耗时,然后再使用PBO进行读取测试,记录平均耗时,最后对比两个方式的耗时,选择最快的一个。这样动态处理是比较复杂的,然而在这种情况下你不得不这样做。那么有没有一种既简单又高效的方式呢?

http://www.songho.ca/opengl/gl_pbo.html

— END —

进技术交流群,扫码添加我的微信:Byte-Flow

本文来自作者投稿,版权归原作者所有。如需转载,请注明出处:https://www.nxrte.com/jishu/5198.html

(0)
  • AWS 发布 Connect 的新路由、分析和聊天功能
  • rtmp推流:Android ffmpeg编码怎么实现rtmp推流
  • 思科将生成式 AI 引入 CCaaS、UCaaS 和安全领域
  • Beeper 被 Automattic 收购,Automattic 对消息传递的未来有宏伟的计划
  • 6种必知的直播流媒体协议:HLS,RTMP,SRT,MSS,MPEG-DASH和WebRTC
  • 使用 Torrent 和 WebRTC 进行 P2P 视频流传输
  • CoDi: 利用可组合扩散实现任意组合模态的处理与生成 | NeurIPS 2023
  • 如何使用 CPaaS 满足业务需求
  • 远程协助,用技术拉近客服用户之间的距离
  •