Abstract:
Gearbox is one of the main vibration sources of the ship's power transmission system. In order to study the vibration performance and optimization measures of the ship gearbox, and then realize the low noise of the ship, taking a ship gearbox as an example, through combining bench test and vibration spectrum analysis, the main factors affecting the vibration of the gearbox are analyzed, and the relevant key factors are optimized and improved. According to the results of vibration analysis, the gearbox is optimized from two aspects: gear modification design and improvement of hydraulic oil supply system. And after taking optimization measures the gearbox is verified by vibration test and vibration spectrum analysis. The results show that the vibration performance of gearbox has been effectively improved by gear modification and hydraulic oil supply system improvement. In the case of this paper, after gear modification, the vibration peak value at gear meshing frequency is reduced by 40.2% and the total vibration level is reduced by 1.85dB. After further measures of hydraulic oil supply system improvement, the total vibration level of gearbox is reduced by 9.99dB. Gear modification and hydraulic oil supply system improvement have engineering application value for improving vibration performance of ship gearbox.
Key words:
Ship;Gearbox;Vibration optimization;Spectrum analysis;Bench test;Gear modification;Hydraulic
摘要:
为了研究船舶齿轮箱振动性能及优化措施,进而实现船舶的低噪声化,以本单位自主研发的船用齿轮箱为例,通过台架试验和振动频谱分析结合的方法分析齿轮箱振动的主要影响因素,对振动性能关键影响因素进行优化改进。结合振动频谱分析结果对齿轮箱从齿轮修形设计和液压供油系统改进两个方面进行了优化,并对采取优化措施后的齿轮箱进行振动试验验证和振动频谱分析。结果表明:齿轮修形和液压供油系统改进两项优化措施可以切实有效地改善齿轮箱的振动性能。在文中的齿轮箱案例中,齿轮修形后齿轮啮合频率处振动峰值下降40.2%,总振级下降1.85dB,进一步采取液压供油系统改进措施后,齿轮箱总振级下降9.99dB。齿轮修形和液压供油系统改进对船用齿轮箱振动性能提升具有工程应用价值。
船舶;齿轮箱;振动优化;频谱分析;台架试验;齿轮修形;液压
GAO Zhen
1
, HOU Tian-zhu
2
, LIU Yuan
2
, CHANG Zhen-luo
1
, WANG Ying-ze
1
, DING Yi
1
, LU Yong-wen
1
. Vibration Test Analysis and Optimization of Ship Gearbox[J]. Journal of Propulsion Technology, 2020, 41(11): 2587-2595.
高珍,侯天柱,刘渊,常震罗,王英泽,丁毅,卢永文. 船舶齿轮箱振动测试分析及优化研究[J]. 推进技术, 2020, 41(11): 2587-2595.
[1] 周 炎, 李国刚, 童宗鹏, 等. 船舶低噪声设计技术研究[J]. 上海造船, 2010, 81(1): 31-34.
[2] 肖英龙, 王国治, 叶林昌, 等. 某船舶减振降噪技术的试验研究[C]. 重庆: 第十四届船舶水下噪声学术讨论会, 2013.
[3] 王 曾. 齿轮箱振动噪声分析及其优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[4] 王晋鹏, 常 山, 刘 更, 等. 船舶齿轮传动装置箱体振动噪声分析与控制研究进展[J]. 船舶力学, 2019, 23(8): 1007-1017.
[5] Tanaka E, Houjoh H, Mutoh D, et al. Vibration and Sound-Radiation Analysis for Designing a Low-Noise Gearbox with a Multi-Stage Helical Gear System[J]. JSME International Journal, 2003, 46(3): 1178-1185.
[6] Liu G, Parker R G, et al. Dynamic Modeling and Analysis of Tooth Profile Modification for Multi Mesh Gear Vibration[J]. Journal of Mechanical Design, 2008, 130(12).
[7] 范孝良, 石鹏飞, 刘建民, 等. 风电齿轮箱微观修形对振动与声振粗糙度性能的影响[J]. 中国工程机械学报, 2019, 17(1): 43-48.
[8] 吴 江, 吴 强, 周一丹, 等. 混合动力变速箱齿轮啸叫分析与优化验证[J]. 机械设计与制造, 2019, (12): 97-100.
[9] 蒋进科, 方宗德, 王 峰, 等. 降低斜齿轮噪声的对角修形优化设计究[J]. 振动与冲击, 2014, 33(7): 63-67.
[10] 林新海, 赵永强, 马玉强, 等. 不同工况下动车组齿轮箱振动特性试验研究[J]. 机械传动, 2019, 43(11): 139-142.
[11] 罗 波. 液下泵流动噪声研究及优化设计[D]. 江苏: 江苏大学, 2017.
[12] 高彦军, 谷立臣, 焦龙飞, 等. 油液特性对柱塞泵流量脉动影响的仿真分析[J]. 中国机械工程, 2017, 28(11): 1333-1338.
[13] Bergada J M, Kumar S, Davies D L, et al. A Complete Analysis of Axial Piston Pump Leakage and Output Flow Ripples[J]. Applied Mathematical Modelling, 2012, 36 (4): 1731-1751.
[14] Rzentkowski G, Zbroja S. Experimental Characterization of Centrifugal Pumps as an Acoustic Source at the Blade-Passing Frequency[J]. Journal of Fluids and Structures, 2000, 14 (4): 529-558.
[15] 何正嘉, 陈 进, 王太勇, 等. 机械故障诊断理论及应用[M]. 北京: 高等教育出版社, 2010.
[16] 黄立坚, 高立新, 廖一凡, 等. 机械设备振动故障监测与诊断[M]. 北京: 化学工业出版社, 2019.
Founded in 1980
Competent department: China Aerospace Science and Industry Group Co., Ltd
Sponsor: China Aerospace Science and industry group No.31 Research Institute
ISSN: 1001-4055
Journal of Propulsion Technology © 2021
E-mail: tjjs@sina.com
www.tjjscasic.com
Support: 010-62662699