深度学习是一门依赖于数据的科学, 传统深度学习方法假定在平衡数据集上训练模型, 然而, 现实世界中大规模数据集通常表现出长尾分布现象, 样本数量众多的少量头部类主导模型训练, 而大量尾部类样本数量过少, 难以得到充分学习. 近年来, 长尾学习掀起学术界的研究热潮, 涌现出大量先进的工作. 本文综合梳理和分析了近年来发表在高水平会议或期刊上的文献, 对长尾学习进行全面的综述. 具体而言, 根据深度学习模型设计流程, 将图像识别领域的长尾学习算法分为丰富样本数量与语义信息的优化样本空间方法, 关注特征提取器、分类器、logits和损失函数这四个基本组成部分的优化模型方法以及通过引入帮助模型训练的辅助任务, 在多个空间共同优化长尾学习模型的辅助任务学习3大类, 并根据提出的分类方法综合对比分析每类长尾学习方法的优缺点. 然后, 进一步将基于样本数量的狭义长尾学习概念推广至多尺度广义长尾学习. 此外, 本文对文本数据、语音数据等其它数据形式下的长尾学习算法进行简要评述. 最后, 讨论了目前长尾学习面临的可解释性较差、数据质量较低等挑战, 并展望了如多模态长尾学习、半监督长尾学习等未来具有潜力的发展方向.
针对模型参数不确定下多无人艇系统的固定时间二分编队跟踪控制问题,通过将命令滤波与复合学习技术融合到反推控制方法中, 提出了一种新型分布式固定时间二分编队跟踪控制协议.首先, 将命令滤波引入到反推控制中, 进而分别设计了虚拟控制协议与真实控制协议.在此基础上, 为估计未知参数设计了参数复合学习律, 利用在线记录的数据和即时数据来产生预测误差, 并利用跟踪误差和预测误差来更新参数估计.结果表明, 在严格弱于持续激励条件的区间激励条件下, 本文提出的控制方案不仅能够保证编队误差的固定时间收敛性也能够保证参数估计误差的固定时间收敛性, 同时解决了多无人艇系统的固定时间二分编队跟踪控制问题. 最后, 通过仿真实验验证了本文提出的控制协议的有效性.
自主无人系统是一类具有自主感知和决策能力的智能系统, 在国防安全、航空航天、高性能机器人等方面有着广泛的应用. 近年来, 基于Transformer架构的各类大模型快速革新, 极大地推动了自主无人系统的发展. 目前, 自主无人系统正迎来一场以“具身智能”为核心的新一代技术革命. 大模型需要借助无人系统的物理实体来实现“具身化”, 无人系统可以利用大模型技术来实现“智能化”. 本文阐述了具身智能自主无人系统的发展现状, 详细探讨了包含大模型驱动的多模态感知、面向具身任务的推理与决策、基于动态交互的机器人学习与控制、三维场景具身模拟器等具身智能领域的关键技术. 最后, 指出了目前具身智能无人系统所面临的挑战, 并展望了未来的研究方向.
前沿的自然场景文本检测方法大多基于全卷积语义分割网络, 利用像素级分类结果有效检测任意形状的文本, 其主要缺点是模型大、推理时间长、内存占用高, 这在实际应用中限制了其部署. 提出一种基于信息熵迁移的自蒸馏训练方法(Self-distillation via entropy transfer, SDET), 利用文本检测网络深层网络输出的分割图(Segmentation map, SM)信息熵作为待迁移知识, 通过辅助网络将信息熵反馈给浅层网络. 与依赖教师网络的知识蒸馏 (Knowledge distillation, KD)不同, SDET仅在训练阶段增加一个辅助网络, 以微小的额外训练代价实现无需教师网络的自蒸馏(Self-distillation, SD). 在多个自然场景文本检测的标准数据集上的实验结果表明, SDET在基线文本检测网络的召回率和F1得分上, 能显著优于其他蒸馏方法.
目前大多数深度学习算法都依赖于大量的标注数据并欠缺一定的泛化能力. 无监督域自适应算法能提取到已标注数据和未标注数据间隐式共同特征, 从而提高算法在未标注数据上的泛化性能. 目前域自适应目标检测算法主要为两阶段目标检测器设计. 针对单阶段检测器中无法直接进行实例级特征对齐导致一定数量域不变特征的缺失, 提出结合通道注意力机制的图像级域分类器加强域不变特征提取. 此外, 对于域自适应目标检测中存在类别特征的错误对齐引起的精度下降问题, 通过原型学习构建类别中心, 设计了一种基于原型的循环域三元损失(Cycle domain triplet loss, CDTL)函数, 从而实现原型引导的精细类别特征对齐. 以单阶段目标检测算法作为检测器, 并在多种域自适应目标检测公共数据集上进行实验. 实验结果证明该方法能有效提升原检测器在目标域的泛化能力, 达到比其他方法更高的检测精度, 并且对于单阶段目标检测网络具有一定的通用性.
由于细粒度图像之间存在小的类间方差和大的类内差异, 现有分类算法仅仅聚焦于单张图像的显著局部特征的提取与表示学习, 忽视了多张图像之间局部的异构语义判别信息, 较难关注到区分不同类别的微小细节, 导致学习到的特征缺乏足够区分度. 本文提出了一种渐进式网络以弱监督的方式学习图像不同粒度层级的信息. 首先, 构建一个注意力累计目标定位模块(Attention accumulation object localization module, AAOLM), 在单张图像上从不同的训练轮次和特征提取阶段对注意力信息进行语义目标集成定位. 其次, 设计一个多张图像异构局部交互图模块(Heterogeneous local interactive graph module, HLIGM), 提取每张图像的显著性局部区域特征, 在类别标签引导下构建多张图像的局部区域特征之间的图网络, 聚合局部特征增强表示的判别力. 最后, 利用知识蒸馏将异构局部交互图模块产生的优化信息反馈给主干网络, 从而能够直接提取具有较强区分度的特征, 避免了在测试阶段建图的计算开销. 通过在多个数据集上进行的实验, 证明了提出方法的有效性, 能够提高细粒度分类的精度.
长距离带式输送机是矿山、港口等领域运输散装物料的主要工具. 针对长距离带式输送机的安全节能运行问题, 研究数字孪生驱动的运行优化方法. 首先, 构建由数字孪生模型、模型同步算法、控制策略和现实带式输送机组成的数字孪生驱动运行优化框架; 然后, 建立数字孪生模型, 包括基于变质量牛顿第二定律和有限元分析法的输送带动力学模型、物料流动态模型和动态能耗模型; 最后, 提出数字孪生驱动的计算决策−仿真评估−优化校正(Decision-simulation-correction, DSC)优化决策方法, 优化带式输送机的稳态和暂态运行带速, 形成可行带速设定曲线. 实验结果表明, 数字孪生驱动的带式输送机运行优化方法可以实现带式输送机安全节能运行. 与传统控制方法相比, 能够根据运行工况实时调速, 提高输送带填充率, 节能13.87%.
自1982年著名的Hopfield神经网络问世以来, 神经网络的分岔动力学受到了学术界的广泛关注. 本文回顾了四类经典神经网络的数学模型和它们在各个领域的应用. 接着, 综述了近三十年来关于整数阶神经网络、分数阶神经网络、超数域神经网络以及反应扩散神经网络分岔动力学的相关研究成果. 分析了诸多组合因素, 包括节点规模、耦合情形、拓扑结构、系统阶次、复值、四元数、八元数、扩散、时滞、随机性、脉冲、忆阻、激活函数等对神经网络分岔动力学的影响, 并展示了神经网络在多个领域的广泛应用. 最后, 在人工智能、大数据、深度学习等新技术的冲击下, 对神经网络分岔动力学所面临的挑战以及未来的研究方向进行了总结和展望.
具身智能强调了大脑、身体及环境三者的相互作用, 旨在基于机器与物理世界的交互, 创建软硬件结合、可自主学习进化的智能体. 当前, 机器学习、机器人学、认知科学等多学科技术的快速发展极大地推动了具身智能的研究与应用. 不同于已有的具身智能文献更多从技术和方法分类的角度入手, 本文以具身智能在研究和应用过程中面临的关键挑战为角度切入, 分析了具身智能研究的一般性框架, 围绕具身感知与执行、具身学习与进化两个方面提出了具体的研究思路, 并针对其中涉及的关键问题详细梳理了相关技术及研究进展. 此外, 本文以移动机器人、仿生机器人、平行机器人三方面应用为例, 介绍了具身智能在感知与理解、控制与决策、交互与学习等方面给实际机器人系统设计带来的启发. 最后, 对具身智能的未来发展方向进行了展望, 探索了虚实融合数据智能、基础模型与基础智能、数字孪生与平行智能在其中的重要作用和应用潜力, 希望为相关领域学者和从业人员提供一定的借鉴和思路. 论文相关项目详见
https://github.com/BUCT-IUSRC/Survey__EmbodiedAI
.
随着工业4.0的发展, 移动智能体系统 (Mobile agent system, MAS) 与多回路无线控制系统 (Wireless control system, WCS) 被部署到工厂中, 构成异构工业物联网系统, 协作执行智能制造任务. 在协作过程中, MAS与WCS紧密耦合, 导致状态相关衰落, 两者性能相互制约. 为解决这一问题, 研究异构工业物联网系统的最优控制问题, 满足WCS控制性能约束与MAS安全生产约束的同时, 最小化系统平均通信成本. 首先, 利用有限域系统描述MAS在不同阴影衰落程度工作区间的转移, 刻画MAS与WCS耦合下的状态相关衰落信道模型. 基于此, 利用矩阵半张量积理论, 通过构建受限跟随者状态转移图, 建立最优控制问题可行性图判据, 给出关于受限集合镇定的充分必要条件. 其次, 基于加权跟随者状态转移图的最小平均环理论, 建立领航-跟随MAS最优控制序列的构造算法, 并证明其最优性. 最后, 通过仿真验证算法的有效性.
已有推荐系统主要基于用户−项目交互矩阵来学习用户和项目的向量表示, 而当交互矩阵稀疏时, 推荐系统的精度较低, 推荐的结果缺乏可解释性. 考虑到用户−项目交互行为中的评分标签信息, 提出了一种融合属性偏好和多阶交互信息的可解释评分预测方法, 并根据属性偏好对推荐结果进行解释. 首先, 基于注意力机制分析了用户和项目属性信息与评分标签的关系, 建模了节点的属性偏好特征表示; 然后, 聚合了用户−项目交互矩阵中节点自身、交互邻居和评分标签信息, 通过图神经网络学习了节点的多阶交互行为特征表示; 最后, 融合了节点的属性偏好特征和交互行为特征, 在异质类型信息空间下学习了用户和项目的语义特征表示, 利用多层感知机实现了评分预测, 并在MovieLens和Douban数据集上验证了方法的有效性. 实验结果表明, 所提方法在平均绝对误差(Mean absolute error, MAE)和均方根误差(Root mean square error, RMSE)指标上有效提高了推荐系统的精度, 缓解了数据稀疏场景下推荐模型性能较低的问题, 提升了推荐结果的可解释性.
为降低无人机(Unmanned aerial vehicle, UAV)使能的无线传感网(Wireless sensor networks, WSNs)的能耗, 延长网络生命周期, 提出一种在地面节点能量预算下系统总能耗优化方法. 首先, 提出地面节点聚类方法, 利用目标函数确定最优簇数, 改进模糊
C
均值(Fuzzy
C
-mean, FCM)算法构建能量均衡的集群, 采用退避定时器机制根据隶属度和能量值选择各集群的最优簇头, 减少地面节点的能耗; 然后, 根据已选簇头位置, 利用遗传算法规划UAV飞行轨迹, 减小UAV能耗; 最后, 通过单纯形搜索算法和连续凸逼近(Successive convex approximation, SCA)算法联合优化簇头发射功率和UAV悬停位置, 减小数据采集时系统的总能耗. 仿真结果表明, 该方法优于其他方法.
面向空间攻防等任务的航天器通常安装微波、激光等大功率对抗载荷, 未来航天器需要装备大型挠性太阳能帆板. 针对挠性航天器姿态机动过程中存在外部干扰、执行机构饱和及挠性附件振动且挠性模态不易直接测量等问题, 提出带挠性附件航天器的全驱姿态控制方法. 首先, 建立挠性航天器全驱姿态控制模型, 其次基于扩展非线性观测器与努斯鲍姆增益调节设计一种抗饱和的姿态控制鲁棒算法. 将外部扰动、挠性振动和输入饱和函数饱和估计误差作为复合干扰, 采用非线性干扰观测器对其进行有效补偿. 在直接参数设计线性控制参数基础上, 扩张非线性观测器负责对挠性航天器产生的挠性振动进行实时估计和补偿, 努斯鲍姆函数辅助控制器输出力矩避免饱和, 并利用李雅普诺夫方法严格证明闭环系统的稳定性. 最后通过数学仿真验证该方法不仅能够实现执行机构饱和约束条件下的姿态控制, 还能有效抑制挠性结构的振动, 为探索未来带有大型挠性附件航天器姿态控制新的方法提供参考.
电力设施巡检对于国家加快电网基础设施智能化改造和智能微电网建设, 提高电力系统互补互济和智能调节能力的需求具有重要作用. 近年来, 智能巡检机器人开始在电力巡检中广泛应用. 在提高电力设施巡检效率和准确性、提升安全性、降低成本和促进电力智能化发展等方面发挥关键作用. 本文从电力巡检机器人的智能感知和导航技术出发, 重点阐述目标检测、语义分割、自主导航等共性关键技术的国内外发展现状. 然后以可见光红外双光融合、可见光图像和点云数据融合、声纹和可见光融合为例, 阐述电力场景多模态数据融合方式. 并进一步介绍电力部件精准分割和异物检测、线路点云杆塔倾斜检测、输电线路覆冰多模态检测和电力架空线路缺陷分析及台账异常检测等电力设施多模态机器人相关案例. 最后探讨电力设施多模态精细化机器人巡检关键技术的发展趋势和所面临的挑战.
基于深度神经网络的分类方法因缺乏可解释性, 导致在金融、医疗、法律等关键领域难以获得完全信任, 极大限制了其应用. 现有多数研究主要关注单模态数据的可解释性, 多模态数据的可解释性方面仍存在挑战. 为解决这一问题, 提出一种基于视觉属性的多模态可解释图像分类方法, 该方法将可见光和深度图等不同视觉模态提取的属性融入模型的训练过程, 不仅能通过视觉属性和决策树对已有的神经网络黑盒模型进行解释, 而且能在训练过程中进一步提升模型解释信息的能力. 引入可解释性通常会造成模型精度的降低, 该方法在保持模型具有良好可解释性的同时, 仍具有较高的分类精度, 在 NYUDv2、SUN RGB-D 和 RGB-NIR 三个数据集上, 相比于单模态可解释方法, 该模型准确率明显提升, 并达到与多模态不可解释模型相媲美的性能.
针对多机器人系统在战场, 灾难现场等复杂未知环境下的区域搜索问题, 提出了一种基于分层仿生神经网络的多机器人协同区域搜索算法. 首先将仿生神经网络(BNN) 和不同分辨率下的区域栅格地图结合, 构建分层仿生神经网络信息模型, 其中包括区域搜索神经网络信息模型(AS-BNN)和区域覆盖神经网络信息模型(AC-BNN). 机器人在任务区域内实时探测到的环境信息将转换为AS-BNN和AC-BNN中神经元的动态活性值. 其次, 在分层仿生神经网络信息模型基础上引入了分布式模型预测控制(DMPC)框架, 并设计了多机器人分层协同决策机制. 当机器人处于正常搜索状态时, 基于AS-BNN信息模型进行搜索路径滚动优化决策. 当机器人陷入局部最优状态时, 则启用AC-BNN信息模型引导机器人快速找到新的未搜索区域. 最后, 在复杂未知环境下进行多机器人区域搜索仿真实验, 并与该领域内的3种算法进行比较. 仿真结果验证了所提算法能够在复杂未知环境下引导多机器人系统高效地完成区域搜索任务.
本文研究了多智能体时变网络上基于bandit反馈的分布式在线鞍点问题, 其中每个智能体通过本地计算和局部信息交流去协作最小化全局损失函数. 在bandit反馈下, 包括梯度在内的损失函数信息是不可用的, 每个智能体仅能获得和使用在某决策或其附近产生的函数值. 为此, 结合单点梯度估计方法和预测映射技术, 提出了一种非欧几里得意义上的分布式在线bandit鞍点优化算法. 以动态鞍点遗憾作为性能指标, 对于一般的凸-凹损失函数, 建立了遗憾上界并在某些预设条件下确保了所提算法的次线性收敛. 此外, 考虑到计算优化子程序的精确解在迭代优化中通常较为困难, 本文进一步设计了一种基于近似计算方法的算法变种, 并严格分析了精确度设置对算法遗憾上界的影响. 最后, 通过一个目标跟踪案例对算法的有效性和先进性进行了仿真验证.
深度学习是解决时间序列分类(Time series classification, TSC)问题的主要途径之一. 然而, 基于深度学习的TSC模型易到受对抗样本攻击, 从而导致模型分类准确率大幅度降低. 为此, 研究了TSC模型的对抗攻击防御问题, 设计了集成对抗训练防御方法. 首先, 设计了一种针对TSC模型的集成对抗训练防御框架, 通过多种TSC模型和攻击方式生成对抗样本, 并用于训练目标模型. 其次, 在生成对抗样本的过程中, 设计了基于Shapelets的局部扰动算法, 并结合动量迭代的快速梯度符号法(Momentum iterative fast gradient sign method, MI-FGSM), 实现了有效的白盒攻击. 同时, 使用知识蒸馏(Knowledge distillation, KD) 和基于沃瑟斯坦距离的生成对抗网络(Wasserstein generative adversarial network, WGAN) 设计了针对替代模型的黑盒对抗攻击方法, 实现了攻击者对目标模型未知时的有效攻击. 在此基础上, 在对抗训练损失函数中添加Kullback-Leibler(KL) 散度约束, 进一步提升了模型鲁棒性. 最后, 在多变量时间序列分类数据集UEA上验证了所提方法的有效性.
设备在实际运行过程中工况复杂多变, 导致振动信号分布存在较大差异. 现有的多数方法通过添加度量指标来约束特征提取过程, 提取源域和目标域的相似特征以解决从单一源域到目标域的诊断问题. 然而, 实际运行过程往往包含多个源域数据, 且目标域信息在不同源域中存在较大差异, 难以有效学习不同域之间的域不变特征. 针对上述问题, 提出了一种基于两阶段域泛化学习框架的轴承故障诊断方法. 在第一阶段, 利用大尺寸卷积特征提取模型对多视图振动信号进行预训练, 提取多个源域数据之间的初级故障特征. 在第二阶段, 将初级故障特征输入动静双态融合的时空图卷积模型中, 捕捉随时间变化的动态特征和全局时空特征. 通过两阶段的学习, 将多个源域的数据映射到一个共有特征空间, 提取判别性和泛化性特征. 实验结果表明, 该方法在多源域轴承故障诊断任务中具有较高的诊断精度和较强的泛化能力.
研究异构不确定二阶非线性多智能体系统的事件触发状态趋同控制问题. 首先, 为每个智能体设计参数观测器用以估计不确定参数, 这些观测器可渐近估计不确定参数. 其次, 为每个跟随智能体设计分布式参数观测器渐近估计领导智能体不确定参数, 每个智能体利用邻居智能体触发时刻的采样值估计其邻居智能体的状态. 基于估计的参数和邻居状态, 提出完全不依赖智能体间连续信息传输的事件触发趋同算法. 同时, 证明在所给算法的作用下多智能体系统能够达到状态趋同且不存在芝诺现象. 最后, 给出一个多单摆系统用以验证事件触发趋同算法, 仿真结果表明跟随智能体的位置和速度可以渐近跟踪领导智能体的位置和速度, 并且整个多智能体系统平均每秒触发8.825次, 对比仿真显示, 基于参数和状态观测器的事件触发状态趋同算法可以有效减少事件触发次数.
行人惯性定位通过惯性测量单元 (Inertial measurement unit, IMU) 的测量序列来估计行人的位置, 近年来已成为解决室内或卫星信号遮挡环境下的行人自主定位的重要手段. 然而, 传统惯性定位算法在双重积分时易受误差源影响导致漂移问题, 一定程度上限制了行人惯性定位在长时间长距离实际运动中的应用. 幸运的是, 基于神经网络学习的方式能够仅从IMU历史数据中学习行人的运动模式并修正惯性测量值在积分时引起的漂移. 为此, 本文对近期基于深度神经网络的行人惯性定位进行全面综述. 首先对传统的惯性定位算法进行了简要介绍; 其次, 按照是否融入领域知识分别介绍了端到端的神经惯性定位方法和融合领域知识的神经惯性定位算法的研究动态; 然后, 概述了行人惯性定位的基准数据集、评价指标, 并分析比较了其中一些代表性方法的优势和不足; 最后, 对该领域需要解决的关键难点问题进行了总结, 并探讨基于深度神经网络的行人惯性定位未来所面临的关键挑战与发展趋势, 以期为后续的研究提供有益参考.
针对介电弹性体驱动器(Dielectric elastomer actuator, DEA)建模与控制的挑战性问题, 提出基于神经网络常微分方程(Ordinary differential equation, ODE)和非线性模型预测控制(Model predictive control, MPC)的DEA动力学建模与跟踪控制方法. 首先, 基于神经网络ODE建立DEA的动力学模型以描述其复杂的动态行为. 然后, 基于所建立的DEA动力学模型, 设计非线性模型预测控制器实现其跟踪控制目标. 最后, 在所搭建的实验平台上进行一系列跟踪控制实验. 在所有实验结果中, DEA的运动均能很好地跟踪目标轨迹, 且相对均方根误差均不超过3.30%, 说明了所提动力学建模与跟踪控制方法的有效性.
多智能体网络(Multi-agent network, MAN)协同执行任务中需要个体之间频繁交换并共享信息, 这对网络安全带来了巨大风险. 考虑网络中节点状态隐私保护问题, 提出一种基于隐写术的分布式一致性控制策略. 首先, 建立网络窃听者攻击模型, 提出面向隐私保护的分布式平均一致性控制算法. 理论分析表明, 所提算法不仅有效保护节点初始状态的隐私, 而且可以通过隐写载体信息主动诱导窃听者推测得出错误结论. 其次, 通过引入概率指标, 提出一种用于量化MAN隐私泄露指标模型, 实现了对网络隐私泄露程度的准确描述. 并基于该模型, 从窃听者视角, 通过权衡对网络隐私泄露的影响与付出代价成本建立一个优化问题, 据此寻找最优效益攻击策略. 最后, 通过数值仿真分析, 对比现有算法验证了所提方法的有效性和优越性.
强化学习作为一类重要的人工智能方法, 广泛应用于解决复杂的控制与决策问题, 其在众多领域的应用已展示出巨大潜力. 近年来, 强化学习从单智能体决策逐渐扩展到多智能体协作与博弈, 形成多智能体强化学习这一研究热点. 多智能体系统由多个具有自主感知和决策能力的实体组成, 有望解决传统单智能体方法难以应对的大规模复杂问题. 多智能体强化学习不仅需要考虑环境的动态性, 还需应对其他智能体策略的不确定性, 这增加了学习和决策的复杂度. 本文梳理多智能体强化学习在控制与决策领域的研究, 分析其面临的主要问题与挑战, 从控制理论与自主决策两个层次综述现有的研究成果与进展, 并针对未来的研究方向进行了展望. 通过本文的分析, 期望为未来多智能体强化学习的研究提供有价值的参考和启示.
针对小样本学习过程上样本数量不足导致的性能下降问题, 基于原型网络的小样本学习方法通过实现查询样本与支持样本原型特征间的距离度量, 从而达到很好的分类性能. 然而, 这种方法直接将支持集样本均值视为类原型, 在一定程度上加剧了对样本数量稀少情况下的敏感性. 针对此问题, 提出了基于自适应原型特征类矫正的小样本学习方法(Few-shot learning based on class rectification via adaptive prototype features, CRAPF), 通过自适应生成原型特征来缓解模型对数据细微变化的过度响应, 并同步实现类边界的精细化调整. 首先, 使用卷积网络构建自适应原型特征生成模块, 该模块采用非线性映射获取更为稳健的原型特征, 有助于减弱异常值对原型构建的影响. 其次, 通过对原型生成过程的优化, 提升了不同类间原型表示的区分度, 进而强化了原型特征对于类别表征的整体效能. 最后, 在3个广泛使用的基准数据集上的实验结果显示, 该方法提升了小样本学习任务的表现. 例如, 在5类5样本设置下, CRAPF在MiniImageNet和CIFAR-FS上的准确率比其他模型至少提高了2.06% 和2.30%.
面对复杂的多模态数据场景, 现有的索引选择方法存在诸多局限性. 首先, 大多数方法考虑场景较为单一, 不能针对特定数据模态选择合适的索引结构, 进而无法有效应对海量多模态数据; 其次, 现有方法未考虑索引选择时索引构建的代价, 无法有效应对动态的工作负载; 再者, 大量的冗余索引配置会消耗磁盘空间, 降低数据的更新效率. 针对上述问题, 提出一种基于 APE-X DQN (Distributed prioritized experience replay in deep Q-network) 模型, 称为面向多模态数据的智能高效索引选择模型 AP-IS (
AP
E-X DQN for
i
ndex
s
election). AP-IS 设计了新型索引集编码和 SQL 语句编码方法, 使 AP-IS 在感知多模态数据同时兼顾索引结构本身的特性, 极大地降低索引的存储代价. AP-IS 集成新型索引效益评估方法, 在优化强化学习奖励机制的同时, 监控数据库工作负载的执行状态, 保证动态工作负载下 AP-IS 在时间和空间上的优化效果. 在真实多模态数据集上进行大量实验, 验证 AP-IS 模型在工作负载的执行时延、存储代价和训练效率等方面性能, 结果均明显优于最新索引选择方法.
随着无人系统技术的快速发展, 海上无人系统跨域集群凭借其诸多优点已成为当前无人系统领域研究热点. 具体来说, 海上无人系统跨域集群是指空中、水面、水下无人平台, 通过跨域任务规划与信息交互实现高效集群协作, 对提升海洋复杂环境下无人平台应对能力至关重要. 目前, 海上无人系统跨域集群理论体系还不完善, 相关研究正面临诸多亟待解决的难题. 为此, 本文首先梳理了跨域集群相关概念及其发展现状, 分析了其面临的挑战与关键问题; 进而, 从控制理论和通信技术相结合角度出发, 简述了跨域集群任务规划、组网传输、协同控制等关键技术的研究进展; 最后, 结合实际发展情况和未来发展趋势, 对海上无人系统跨域集群未来值得深入研究的研究方向进行了总结与展望.
城市固废焚烧(Municipal solid waste incineration, MSWI) 过程因工业现场的安全要求和控制系统的封闭特性导致离线研究的各类智能算法难以在线验证. 此外, 已有的实验室仿真平台难以模拟领域专家基于多模态数据进行智能感知、认知、决策和控制的工业实际. 针对上述问题, 首先, 在综述现有面向工业过程的仿真平台研究现状和所面临挑战的基础上, 描述面向MSWI过程智能算法测试与验证平台的需求, 提出并构建了由多模态历史数据驱动系统、安全隔离与优化控制系统和多入多出回路控制系统组成的模块化半实物平台. 然后, 在实验室环境中完成平台硬件搭建、工业软件开发、仿真功能实现和典型场景验证, 并移植部分模块至现场进行应用. 最后, 总结与展望所构建模块化半实物平台的研究方向.
城市固废焚烧技术因兼具减量化、无害化、资源化等特点, 已成为治理固废污染的主要方式. 由于城市固废成分复杂, 含水率、热值动态波动, 固废燃烧、余热利用、烟气净化等环节耦合冲突, 实际工业过程难以高效运行. 为此, 文中提出了一种基于多目标粒子群算法的城市固废焚烧过程智能操作优化方法, 以期实现燃烧效率和烟气净化效率的协同优化. 首先, 设计自组织径向基函数神经网络建立运行指标模型, 实现城市固废焚烧过程运行性能的在线评价; 其次, 引入区域拥挤度指标提出了一种改进的多目标粒子群优化算法, 以获取操作变量的Pareto解集; 然后, 利用熵权法确定操作变量最佳设定值, 实现城市固废焚烧过程高效运行; 最后, 通过北京某城市固废焚烧厂的实际运行数据对所提方法进行验证, 实验结果表明基于多目标粒子群算法的智能操作优化方法可以实现燃烧效率与脱硝效率的协同提升.
原油移动路径规划是原油调度中至关重要的子任务, 直接影响到生产过程中原油供给的稳定性和付油的高效性. 由于此任务需要考虑大规模罐区内复杂的设备条件, 并受到严格的工业生产约束, 同时需要兼顾途径阀门数量与泵机组运力, 导致目前依然倚重调度人员的人工经验来制定路径规划方案, 对传统算法和进化算法的应用提出了挑战. 据此, 本研究基于有向图结构对大规模原油罐区进行细致数学建模, 并提出了一种基于偏好的原油移动路径多目标优化算法, 突破了过去高度依赖人工方法的局限性, 为原油移动路径规划提供智能化解决方案, 实验证明该算法能够在满足实际约束的条件下, 找到复杂任务的高质量候选解, 验证了其在此领域的可行性和有效性.
随着感知技术的不断发展以及智能交通基础设施的完善, 智能网联汽车应用在自动驾驶领域的地位逐渐提升, 自动驾驶感知从单车智能向车路协同迈进, 近年来涌现了一批新的协同感知技术与方法. 本文旨在全面阐述面向智能网联汽车的车路协同感知技术, 并总结相关可利用数据及该方向发展趋势. 首先对智能网联汽车的协同感知策略进行划分, 并总结了不同感知策略具备的优势与不足;其次, 对智能网联汽车协同感知的关键技术进行阐述, 包括车路协同感知过程中的感知技术与通信技术;然后对车路协同感知方法进行归纳, 总结了近年来解决协同感知中感知融合、感知信息选择与压缩等问题相关研究;最后对车路协同感知的大规模数据集进行了整理, 并对智能网联汽车协同感知的发展趋势进行了分析.
本文研究了柔性关节机械臂信息物理融合系统在传感器测量和执行器输入受到网络攻击时的安全控制问题. 首先, 用T-S 模糊模型描述柔性关节机械臂系统, 描述后的模型可能存在不可测量或可测量但受传感器攻击影响的前件变量, 这些前件变量直接用于构建模糊控制器会影响控制器的控制效果. 因此, 提出一类模糊协同交互观测器来构造新的、可靠的、可利用的前件变量. 同时, 该观测器能够与包含攻击估计误差信息的辅助系统进行协同交互. 与已有结果相比, 所提出的观测器通过协同交互结构, 充分利用了攻击估计误差信息, 提高攻击信号的重构精度. 在此基础上, 提出了一种具有攻击补偿结构的安全控制方案, 从而消除了传感器和执行器攻击对柔性关节机械臂信息物理融合系统性能的影响. 仿真结果验证了所提出的安全控制方案的有效性.
现有视觉缺陷检测技术通常基于传统电荷耦合器件(Charge-coupled device, CCD)或互补金属氧化物半导体(Complementary metal-oxide-semiconductor, CMOS)相机进行缺陷成像和后端检测算法开发. 然而, 现有技术存在成像速度慢、动态范围小、背景干扰大等问题, 难以实现对高反光产品表面弱小瑕疵的快速检测. 针对上述挑战, 创新性地提出了一套基于动态视觉传感器(Dynamic vision sensor, DVS)的缺陷检测新模式, 以实现对具有高反光特性的铝基盘片表面缺陷的高效检测. DVS是一种新型的仿生视觉传感器, 具有成像速度快、动态范围大、运动目标捕捉能力强等优势. 首先开展了面向铝基盘片高反光表面弱小瑕疵的DVS成像实验, 并分析总结了DVS缺陷成像的特性与优势. 随后, 构建了第一个基于DVS的缺陷检测数据集(Event-based defect detection dataset, EDD-10k), 包含划痕、点痕、污渍三类常见缺陷类型. 最后, 针对缺陷形态多变、纹理稀疏、噪声干扰等问题, 提出了一个基于时序不规则特征聚合框架的DVS缺陷检测算法(Temporal irregular feature aggregation framework for event-based defect detection, TIFF-EDD), 实现对缺陷目标的有效检测.
动态多目标优化问题广泛存在于科学研究和工程实践中, 其主要考虑在动态环境下同时联合优化多个冲突目标. 现有方法往往关注于目标空间的时域特征, 忽视了对单个决策变量变化特性的探索与利用, 从而在处理更复杂的问题时不能有效引导种群收敛. 为此, 提出一种基于决策变量时域变化特征分类的动态多目标进化算法. 所提算法在环境动态变化时, 首先基于决策变量时域变化特征分类方法将当前时刻决策变量划分为线性变化和非线性变化两种类型; 然后分别采用拉格朗日外插法和傅里叶预测模型对线性和非线性变化决策变量进行下一时刻的初始化操作. 为了更有效地识别非线性决策变量变化模式, 傅里叶预测模型通过傅里叶变换将历史种群数据从时域转换到频域, 在分析周期性频率特征后, 使用自回归模型进行频谱估计后再反变换至时域. 我们在多个基准数据集上和当前算法进行了广泛的对比. 实验结果表明, 所提算法是有效的, 在大多数实验设置下优于其他对比方法.
在统计流形空间中, 从信息几何角度考虑非线性状态后验分布近似的实质是后验分布与相应参数化变分分布之间的Kullback-Leibler散度最小化问题, 同时也可以转化为变分置信下界的最大化问题. 为了提升非线性系统状态估计的精度, 在高斯系统假设条件下结合变分贝叶斯推断和Fisher信息矩阵推导出置信下界的自然梯度, 并通过分析其信息几何意义, 阐述在统计流形空间中置信下界沿其方向不断迭代增大, 实现变分分布与后验分布的 “紧密” 近似; 在此基础上, 以状态估计及其误差协方差作为变分超参数, 结合最优估计理论给出一种基于自然梯度的非线性变分贝叶斯滤波算法; 最后, 通过天基光学传感器量测条件下近地轨道卫星跟踪定轨仿真实验验证: 与对比算法相比, 所提算法具有更高的精度.
增加可再生能源在电网中的占比, 使能源结构更合理, 是加快能源转型实现低碳可持续发展的有效途径. 电网中占主导地位的火电, 辅助消纳可再生能源的能力, 对提高可再生能源在电网中的占比起到重要作用. 为了提高火电机组辅助可再生能源的消纳能力, 本文根据当前系统控制方案, 分析了影响机组灵活性与调峰深度的因素, 包括机炉协调、局部反馈策略下的锅炉控制、系统稳态工作点的规划等. 基于补偿方案的协调策略限制了机组对具有随机性和间歇性的可再生能源的补偿能力; 局部反馈策略下的锅炉控制只是实现了等效热效应的反馈; 非额定工况下的稳态工作点关系到辅助可再生能源消纳的能耗和排放指标. 根据以上分析分别给出了进一步的研究内容.
首先, 通过分析黑体温度控制系统的物理模型, 推演出黑体传递函数的表达式.推演过程中得知黑体易受环境温度和空气散热的影响, 所以黑体温度控制系统是个非线性时变系统.结合实验黑体的阶跃响应数据, 采用阶跃响应法对传递函数进行近似计算, 得出黑体温控系统的传递函数是极点在左半轴的二阶系统, 该系统等效于二阶低通滤波器.经过低通滤波器的信号, 会滤除高频部分, 当用继电器法进行参数自整定时, 仅需计算能量较大的基波信号.通过对基波信号进行比较, 得出继电器法的整定公式, 并参照Ziegler-Nichols整定法则计算出PID参数.同时, 本文针对黑体加热器具有双路输出的特点, 提出了一种双路动态输出法, 通过理论分析了该方法可以消除环境对黑体温度的影响.对于环境温度变化较大的, 采用继电器法PID参数自整定的方式来消除; 对于黑体运行过程中环境温度变化较小的, 采用双路动态输出法来减少影响.最后, 结合实验数据, 引入性能指标, 验证了本文所述方法对黑体的温度控制性能有一定的提升.
深度神经网络在解决复杂问题方面取得了惊人的成功, 广泛应用于生活中各个领域, 但是最近的研究表明, 深度神经网络容易受到精心设计的对抗样本的攻击, 导致网络模型输出错误的预测结果, 这对于深度学习网络的安全性是一种极大的挑战. 对抗攻击是深度神经网络发展过程中必须克服的一大障碍, 设计一种高效且能够防御多种对抗攻击算法, 且具有强鲁棒性的防御模型是有效推动对抗攻击防御的方向之一, 探究能否利用对抗性攻击来训练网络分类器从而提高其鲁棒性具有重要意义. 本文将生成对抗网络(Generative adversarial networks, GAN)和现有的攻击算法结合, 提出一种基于生成对抗网络的对抗攻击防御模型(AC-DefGAN), 利用对抗攻击算法生成攻击样本作为GAN的训练样本, 同时在网络中加入条件约束来稳定模型的训练过程, 利用分类器对生成器所生成样本的分类来指导GAN的训练过程, 通过自定义分类器需要防御的攻击算法来生成对抗样本以完成判别器的训练, 从而得到能够防御多种对抗攻击的分类器. 通过在MNIST、CIFAR-10和ImageNet数据集上进行实验, 证明训练完成后, AC-DefGAN可以直接对原始样本和对抗样本进行正确分类, 对各类对抗攻击算法达到很好的防御效果, 且比已有方法防御效果好、鲁棒性强.
事件抽取是一个历史悠久且极具挑战的研究任务, 近年来取得了大量优异成果. 由于事件抽取涉及的研究内容较多, 它们的目标和重心各不相同, 使得读者难以全面地了解事件抽取包含的研究任务、研究问题和未来热点趋势. 为此, 面向研究问题, 对基于深度学习的事件抽取研究成果进行整理. 首先, 界定事件相关概念, 论述事件抽取的研究任务, 明确各研究任务的目标, 再总结各任务上的代表性研究成果; 接着, 总结现有事件抽取成果主要致力于解决哪些方面研究问题, 分析为什么会存在这些问题. 分析为什么需要解决这些问题; 然后, 对各方面研究问题进行技术总结, 分析各自研究方案和研究推进过程; 最后, 讨论事件抽取的发展趋势.
无线网络是工业物联网中一种具有良好前景的网络互联技术. 它的应用为工业现场设备的部署提供了极大便利, 使设备摆脱了线缆束缚, 从而在空间上选点更为灵活, 同时能够节省线材和人力等方面成本. 然而, 无线通信易受环境噪声影响, 尤其是在复杂电磁干扰的工业环境中, 易导致无线传输时延增大和数据丢失. 这些问题对于传输实时性要求较高的工业控制系统是非常不利的因素. 为了提高无线网络在工业环境中数据传输的实时性, 学者们设计了多种传输调度算法, 以提高无线通信的实时性和可靠性, 从而满足工业应用需求. 综述了工业无线网络传输调度算法的研究现状, 对其发展历程、问题定义、评价指标、分类方法和现有标准等方面进行了全面总结, 详细阐述了具有代表性的调度算法的工作原理, 并指出了未来的研究方向.
决策蕴涵分析是形式概念分析研究的重要方面, 基于形式背景获取决策蕴涵、概念规则等知识是数据分析、机器学习的重要研究内容之一. 首先, 利用属性逻辑语义对决策蕴涵的特性进行刻画. 其次, 在经典二值逻辑框架下分析决策蕴涵、概念规则的基于全蕴涵三
I
推理思想及分离规则(Modus ponens, MP)和逆分离规则(Modus tonens, MT)的近似推理模式的特征, 证明决策蕴涵的MP、MT近似推理结论是决策蕴涵, 概念规则的MP、MT近似推理结论是概念规则等结论. 引进属性逻辑公式的伪距离, 在属性逻辑伪距离空间中分析推理对象范围参数变化对决策蕴涵MP、MT近似推理结论的影响. 最后, 提出若干通过MP、MT近似推理生成决策蕴涵、概念规则及拟决策蕴涵的模式和方法, 数值实验验证了所提方法的有效性.
地址:北京中关村东路95号
邮政编码:100190
E-mail:
[email protected]
电话:010-82544677 (日常咨询和稿件处理),
010-82544653(费用管理、寄刊)
北京仁和汇智信息技术有限公司
开发
技术支持:
[email protected]