添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • User Defined Functions (UDFs)
  • Matplotlib & Plotly Charts
  • Jupyter Notebooks: Interact with Excel
  • Command Line Client (CLI)
  • Deployment
  • OneDrive and SharePoint
  • Troubleshooting
  • License Key
  • xlwings Server (self-hosted)
  • xlwings Reports
    • Quickstart
    • Components and Filters
    • Markdown Formatting
    • xlwings Reader
    • 1-click Installer/Embedded Code
    • About

    • Changelog
    • License
    • API Reference
      • Top-level functions
      • UDF decorators
      • Books
      • Characters
      • Chart
      • Charts
      • Names
      • PageSetup
      • Picture
      • Pictures
      • Range
      • RangeColumns
      • RangeRows
      • Reports
      • Shape
      • Shapes
      • Sheet
      • Sheets
      • Table
      • Tables
      • Converters and Options

        Introduced with v0.7.0, converters define how Excel ranges and their values are converted both during reading and writing operations. They also provide a consistent experience across xlwings.Range objects and User Defined Functions (UDFs).

        Converters are explicitly set in the options method when manipulating Range objects or in the @xw.arg and @xw.ret decorators when using UDFs. If no converter is specified, the default converter is applied when reading. When writing, xlwings will automatically apply the correct converter (if available) according to the object’s type that is being written to Excel. If no converter is found for that type, it falls back to the default converter.

        All code samples below depend on the following import:

        >>> import xlwings as xw
        

        Syntax:

        Action

        Range objects

        reading

        myrange.options(convert=None, **kwargs).value

        @arg('x', convert=None, **kwargs)

        writing

        myrange.options(convert=None, **kwargs).value = myvalue

        @ret(convert=None, **kwargs)

        Keyword arguments (kwargs) may refer to the specific converter or the default converter. For example, to set the numbers option in the default converter and the index option in the DataFrame converter, you would write:

        myrange.options(pd.DataFrame, index=False, numbers=int).value
        

        If no options are set, the following conversions are performed:

      • single cells are read in as floats in case the Excel cell holds a number, as unicode in case it holds text, as datetime if it contains a date and as None in case it is empty.

      • columns/rows are read in as lists, e.g. [None, 1.0, 'a string']

      • 2d cell ranges are read in as list of lists, e.g. [[None, 1.0, 'a string'], [None, 2.0, 'another string']]

      • The following options can be set:

        ndim

        Force the value to have either 1 or 2 dimensions regardless of the shape of the range:

        >>> import xlwings as xw
        >>> sheet = xw.Book().sheets[0]
        >>> sheet['A1'].value = [[1, 2], [3, 4]]
        >>> sheet['A1'].value
        >>> sheet['A1'].options(ndim=1).value
        [1.0]
        >>> sheet['A1'].options(ndim=2).value
        [[1.0]]
        >>> sheet['A1:A2'].value
        [1.0 3.0]
        >>> sheet['A1:A2'].options(ndim=2).value
        [[1.0], [3.0]]
        

        numbers

        By default cells with numbers are read as float, but you can change it to int:

        >>> sheet['A1'].value = 1
        >>> sheet['A1'].value
        >>> sheet['A1'].options(numbers=int).value
        

        Alternatively, you can specify any other function or type which takes a single float argument.

        Using this on UDFs looks like this:

        @xw.func
        @xw.arg('x', numbers=int)
        def myfunction(x):
            # all numbers in x arrive as int
            return x
        

        Excel delivers all numbers as floats in the interactive mode, which is the reason why the int converter rounds numbers first before turning them into integers. Otherwise it could happen that e.g., 5 might be returned as 4 in case it is represented as a floating point number that is slightly smaller than 5. Should you require Python’s original int in your converter, use raw int` instead.

        dates

        By default cells with dates are read as datetime.datetime, but you can change it to datetime.date:

      • Range:

        >>> import datetime as dt
        >>> sheet['A1'].options(dates=dt.date).value
        
      • UDFs (decorator):

        @xw.arg('x', dates=dt.date)
        

        Alternatively, you can specify any other function or type which takes the same keyword arguments as datetime.datetime, for example:

        >>> my_date_handler = lambda year, month, day, **kwargs: "%04i-%02i-%02i" % (year, month, day)
        >>> 
        
        
        
        
            
        sheet['A1'].options(dates=my_date_handler).value
        '2017-02-20'
        

        transpose

        This works for reading and writing and allows us to e.g. write a list in column orientation to Excel:

      • Range: sheet['A1'].options(transpose=True).value = [1, 2, 3]

      • UDFs:

        @xw.arg('x', transpose=True)
        @xw.ret(transpose=True)
        def myfunction(x):
            # x will be returned unchanged as transposed both when reading and writing
            return x
        

        expand

        This works the same as the Range properties table, vertical and horizontal but is only evaluated when getting the values of a Range:

        >>> import xlwings as xw
        >>> sheet = xw.Book().sheets[0]
        >>> sheet['A1'].value = [[1,2], [3,4]]
        >>> range1 = sheet['A1'].expand()
        >>> range2 = sheet['A1'].options(expand='table')
        >>> range1.value
        [[1.0, 2.0], [3.0, 4.0]]
        >>> range2.value
        [[1.0, 2.0], [3.0, 4.0]]
        >>> sheet['A3'].value = [5, 6]
        >>> range1.value
        [[1.0, 2.0], [3.0, 4.0]]
        >>> range2.value
        [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]
        

        The expand method is only available on Range objects as UDFs only allow to manipulate the calling cells.

        chunksize

        When you read and write from or to big ranges, you may have to chunk them or you will hit a timeout or a memory error. The ideal chunksize will depend on your system and size of the array, so you will have to try out a few different chunksizes to find one that works well:

        import pandas as pd
        import numpy as np
        sheet = xw.Book().sheets[0]
        data = np.arange(75_000 * 20).reshape(75_000, 20)
        df = pd.DataFrame(data=data)
        sheet['A1'].options(chunksize=10_000).value = df
        

        And the same for reading:

        # As DataFrame
        df = sheet['A1'].expand().options(pd.DataFrame, chunksize=10_000).value
        # As list of list
        df = sheet['A1'].expand().options(chunksize=10_000).value
        

        Added in version 0.28.0.

        If True, will include cell errors such as #N/A as strings. By default, they will be converted to None.

        formatter

        Added in version 0.28.1.

        You can’t use formatters with Excel tables.

        The formatter option accepts the name of a function. The function will be called after writing the values to Excel and allows you to easily style the range in a very flexible way. How it works is best shown with a little example:

        import pandas as pd
        import xlwings as xw
        sheet = xw.Book().sheets[0]
        def table(rng: xw.Range, df: pd.DataFrame):
            """This is the formatter function"""
            # Header
            rng[0, :].color = "#A9D08E"
            # Rows
            for ix, row in enumerate(rng.rows[1:]):
                if ix % 2 == 0:
                    row.color = "#D0CECE"  # Even rows
            # Columns
            for ix, col in enumerate(df.columns):
                if "two" in col:
                    rng[1:, ix].number_format = "0.0%"
        df = pd.DataFrame(data={"one": [1, 2, 3, 4], "two": [5, 6, 7, 8]})
        sheet["A1"].options(formatter=table, index=False).value = df
        

        Running this code will format the DataFrame like this:

        The formatter’s signature is: def myformatter(myrange, myvalues) where myrange corresponds to the range where myvalues are written to. myvalues is simply what you assign to the value property in the last line of the example. Since we’re using this with a DataFrame, it makes sense to name the argument accordingly and using type hints will help your editor with auto-completion. If you would use a nested list instead of a DataFrame, you would write something like this instead:

        def table(rng: xw.Range, values: list[list]):
        

        Built-in Converters

        xlwings offers several built-in converters that perform type conversion to dictionaries, NumPy arrays, Pandas Series and DataFrames. These build on top of the default converter, so in most cases the options described above can be used in this context, too (unless they are meaningless, for example the ndim in the case of a dictionary).

        It is also possible to write and register a custom converter for additional types, see below.

        The samples below can be used with both xlwings.Range objects and UDFs even though only one version may be shown.

        Dictionary converter

        The dictionary converter turns two Excel columns into a dictionary. If the data is in row orientation, use transpose:

        >>> sheet = xw.sheets.active
        >>> sheet['A1:B2'].options(dict).value
        {'a': 1.0, 'b': 2.0}
        >>> sheet['A4:B5'].options(dict, transpose=True).value
        {'a': 1.0, 'b': 2.0}
        

        Note: instead of dict, you can also use OrderedDict from collections.

        Numpy array converter

        options: dtype=None, copy=True, order=None, ndim=None

        The first 3 options behave the same as when using np.array() directly. Also, ndim works the same as shown above for lists (under default converter) and hence returns either numpy scalars, 1d arrays or 2d arrays.

        Example

        >>> import numpy as np
        >>> sheet = xw.Book()
        
        
        
        
            
        .sheets[0]
        >>> sheet['A1'].options(transpose=True).value = np.array([1, 2, 3])
        >>> sheet['A1:A3'].options(np.array, ndim=2).value
        array([[ 1.],
               [ 2.],
               [ 3.]])
        

        Pandas Series converter

        options: dtype=None, copy=False, index=1, header=True

        The first 2 options behave the same as when using pd.Series() directly. ndim doesn’t have an effect on Pandas series as they are always expected and returned in column orientation.

        index: int or Boolean
        When reading, it expects the number of index columns shown in Excel.
        When writing, include or exclude the index by setting it to True or False.
        header: Boolean
        When reading, set it to False if Excel doesn’t show either index or series names.
        When writing, include or exclude the index and series names by setting it to True or False.

        For index and header, 1 and True may be used interchangeably.

        Example:

        >>> sheet = xw.Book().sheets[0]
        >>> s = sheet['A1'].options(pd.Series, expand='table').value
        2001-01-01    1
        2001-01-02    2
        2001-01-03    3
        2001-01-04    4
        2001-01-05    5
        2001-01-06    6
        Name: series name, dtype: float64
        

        Pandas DataFrame converter

        options: dtype=None, copy=False, index=1, header=1

        The first 2 options behave the same as when using pd.DataFrame() directly. ndim doesn’t have an effect on Pandas DataFrames as they are automatically read in with ndim=2.

        index: int or Boolean
        When reading, it expects the number of index columns shown in Excel.
        When writing, include or exclude the index by setting it to True or False.
        header: int or Boolean
        When reading, it expects the number of column headers shown in Excel.
        When writing, include or exclude the index and series names by setting it to True or False.

        For index and header, 1 and True may be used interchangeably.

        Example:

        >>> sheet = xw.Book().sheets[0]
        >>> df = sheet['A1:D5'].options(pd.DataFrame, header=2).value
            a     b
            c  d  e
        10  1  2  3
        20  4  5  6
        30  7  8  9
        # Writing back using the defaults:
        >>> sheet['A1'].value = df
        # Writing back and changing some of the options, e.g. getting rid of the index:
        >>> sheet['B7'].options(index=False).value = df
        

        The same sample for UDF (starting in cell A13 on screenshot) looks like this:

        @xw.func
        @xw.arg('x', pd.DataFrame, header=2)
        @xw.ret(index=False)
        def myfunction(x):
           # x is a DataFrame, do something with it
           return x
        

        Technically speaking, these are “no-converters”.

      • If you need access to the xlwings.Range object directly, you can do:

        @xw.func
        @xw.arg('x', 'range')
        def myfunction(x):
           return x.formula
        

        This returns x as xlwings.Range object, i.e. without applying any converters or options.

      • The raw converter delivers the values unchanged from the underlying libraries (pywin32 on Windows and appscript on Mac), i.e. no sanitizing/cross-platform harmonizing of values are being made. This might be useful in a few cases for efficiency reasons. E.g:

        >>> sheet['A1:B2'].value
        [[1.0, 'text'], [datetime.datetime(2016, 2, 1, 0, 0), None]]
        >>> sheet['A1:B2'].options('raw').value  # or sheet['A1:B2'].raw_value
        ((1.0, 'text'), (pywintypes.datetime(2016, 2, 1, 0, 0, tzinfo=TimeZoneInfo('GMT Standard Time', True)), None))
        

        Here are the steps to implement your own converter:

      • Inherit from xlwings.conversion.Converter

      • Implement both a read_value and write_value method as static- or classmethod:

      • In read_value, value is what the base converter returns: hence, if no base has been specified it arrives in the format of the default converter.

      • In write_value, value is the original object being written to Excel. It must be returned in the format that the base converter expects. Again, if no base has been specified, this is the default converter.

      • The options dictionary will contain all keyword arguments specified in the options method, e.g. when calling myrange.options(myoption='some value') or as specified in the @arg and @ret decorator when using UDFs. Here is the basic structure:

        from xlwings.conversion import Converter
        class MyConverter(Converter):
            @staticmethod
            def read_value(value, options):
                myoption = options.get('myoption', default_value)
                return_value = value  # Implement your conversion here
                return return_value
            @staticmethod
            def write_value(value, options):
                myoption = options.get('myoption', default_value)
                return_value = value  # Implement your conversion here
                return return_value
        
      • Optional: set a base converter (base expects a class name) to build on top of an existing converter, e.g. for the built-in ones: DictConverter, NumpyArrayConverter, PandasDataFrameConverter, PandasSeriesConverter

      • Optional: register the converter: you can (a) register a type so that your converter becomes the default for this type during write operations and/or (b) you can register an alias that will allow you to explicitly call your converter by name instead of just by class name

      • The following examples should make it much easier to follow - it defines a DataFrame converter that extends the built-in DataFrame converter to add support for dropping nan’s:

        from xlwings.conversion import Converter, PandasDataFrameConverter
        class DataFrameDropna(Converter):
            base = PandasDataFrameConverter
            @staticmethod
            def read_value(builtin_df, options):
                dropna = options.get('dropna', False)  # set default to False
                if dropna:
                    converted_df = builtin_df.dropna()
                else:
                    converted_df = builtin_df
                # This will arrive in Python when using the DataFrameDropna converter for reading
                return converted_df
            @staticmethod
            def write_value(df, options):
                dropna = options.get('dropna', False)
                if dropna:
                    converted_df = df.dropna()
                else:
                    converted_df = df
                # This will be passed to the built-in PandasDataFrameConverter when writing
                return converted_df
        

        Now let’s see how the different converters can be applied:

        # Fire up a Workbook and create a sample DataFrame
        sheet = xw.Book().sheets[0]
        df = pd.DataFrame([[1.,10.],[2.,np.nan], [3., 30.]])
        
      • Default converter for DataFrames:

        # Write
        sheet['A1'].value = df
        # Read
        sheet['A1:C4'].options(pd.DataFrame).value
        
      • DataFrameDropna converter:

        # Write
        sheet['A7'].options(DataFrameDropna, dropna=True).value = df
        # Read
        sheet['A1:C4'].options(DataFrameDropna, dropna=True).value
        
      • Register an alias (optional):

        DataFrameDropna.register('df_dropna')
        # Write
        sheet['A12'].options('df_dropna', dropna=True).value = df
        # Read
        sheet['A1:C4'].options('df_dropna', dropna=True).value
        
      • Register DataFrameDropna as default converter for DataFrames (optional):

        DataFrameDropna.register(pd.DataFrame)
        # Write
        sheet['A13'].options(dropna=True).value = df
        # Read
        sheet['A1:C4'].options(pd.DataFrame, dropna=True).value
        

        These samples all work the same with UDFs, e.g.:

        @xw.func
        @arg('x', DataFrameDropna, dropna=True)
        @ret(DataFrameDropna, dropna=True)
        def myfunction(x):
            # ...
            return x
        

        Python objects run through multiple stages of a transformation pipeline when they are being written to Excel. The same holds true in the other direction, when Excel/COM objects are being read into Python.

        Pipelines are internally defined by Accessor classes. A Converter is just a special Accessor which converts to/from a particular type by adding an extra stage to the pipeline of the default Accessor. For example, the PandasDataFrameConverter defines how a list of lists (as delivered by the default Accessor) should be turned into a Pandas DataFrame.

        The Converter class provides basic scaffolding to make the task of writing a new Converter easier. If you need more control you can subclass Accessor directly, but this part requires more work and is currently undocumented.

  •