本篇文章给大家分享的是有关Spark-submit执行流程是怎么样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
在叶集等地区,都构建了全面的区域性战略布局,加强发展的系统性、市场前瞻性、产品创新能力,以专注、极致的服务理念,为客户提供网站制作、
网站建设
网站设计制作按需设计网站,公司网站建设,企业网站建设,
成都品牌网站建设
,
成都全网营销
,成都外贸网站建设公司,叶集网站建设费用合理。
我们在进行Spark任务提交时,会使用“spark-submit -class .....”样式的命令来提交任务,该命令为Spark目录下的shell脚本。它的作用是查询spark-home,调用spark-class命令。
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0
exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
随后会执行spark-class命令,以SparkSubmit类为参数进行任务向Spark程序的提交,而Spark-class的shell脚本主要是执行以下几个步骤:
(1)加载spark环境参数,从conf中获取
if [ -z "${SPARK_HOME}" ]; then
source "$(dirname "$0")"/find-spark-home
. "${SPARK_HOME}"/bin/load-spark-env.sh
# 寻找javahome
if [ -n "${JAVA_HOME}" ]; then
RUNNER="${JAVA_HOME}/bin/java"
if [ "$(command -v java)" ]; then
RUNNER="java"
echo "JAVA_HOME is not set" >&2
exit 1
fi
(2)载入java,jar包等
# Find Spark jars.
if [ -d "${SPARK_HOME}/jars" ]; then
SPARK_JARS_DIR="${SPARK_HOME}/jars"
SPARK_JARS_DIR="${SPARK_HOME}/assembly/target/scala-$SPARK_SCALA_VERSION/jars"
fi
(3)调用org.apache.spark.launcher中的Main进行参数注入
build_command() {
"$RUNNER" -Xmx128m -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@"
printf "%d\0" $?
}
(4)shell脚本监测任务执行状态,是否完成或者退出任务,通过执行返回值,判断是否结束
if ! [[ $LAUNCHER_EXIT_CODE =~ ^[0-9]+$ ]]; then
echo "${CMD[@]}" | head -n-1 1>&2
exit 1
if [ $LAUNCHER_EXIT_CODE != 0 ]; then
exit $LAUNCHER_EXIT_CODE
CMD=("${CMD[@]:0:$LAST}")
exec "${CMD[@]}"
2.任务检测及提交任务到Spark
检测执行模式(class or submit)构建cmd,在submit中进行参数的检查(SparkSubmitOptionParser),构建命令行并且打印回spark-class中,最后调用exec执行spark命令行提交任务。通过组装而成cmd内容如下所示:
/usr/local/java/jdk1.8.0_91/bin/java-cp
/data/spark-1.6.0-bin-hadoop2.6/conf/:/data/spark-1.6.0-bin-hadoop2.6/lib/spark-assembly-1.6.0-hadoop2.6.0.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-api-jdo-3.2.6.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-rdbms-3.2.9.jar:/data/spark-1.6.0-bin-hadoop2.6/lib/datanucleus-core-3.2.10.jar:/data/hadoop-2.6.5/etc/hadoop/
-Xms1g-Xmx1g -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=1234
org.apache.spark.deploy.SparkSubmit
--classorg.apache.spark.repl.Main
--nameSpark shell
--masterspark://localhost:7077
--verbose/tool/jarDir/maven_scala-1.0-SNAPSHOT.jar
3.SparkSubmit函数的执行
(1)Spark任务在提交之后会执行SparkSubmit中的main方法
def main(args: Array[String]): Unit = {
val submit = new SparkSubmit()
submit.doSubmit(args)
}
(2)doSubmit()对log进行初始化,添加spark任务参数,通过参数类型执行任务:
def doSubmit(args: Array[String]): Unit = {
// Initialize logging if it hasn't been done yet. Keep track of whether logging needs to
// be reset before the application starts.
val uninitLog = initializeLogIfNecessary(true, silent = true)
val appArgs = parseArguments(args)
if (appArgs.verbose) {
logInfo(appArgs.toString)
appArgs.action match {
case SparkSubmitAction.SUBMIT => submit(appArgs, uninitLog)
case SparkSubmitAction.KILL => kill(appArgs)
case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
case SparkSubmitAction.PRINT_VERSION => printVersion()
}
SUBMIT:使用提供的参数提交application
KILL(Standalone and Mesos cluster mode only):通过REST协议终止任务
REQUEST_STATUS(Standalone and Mesos cluster mode only):通过REST协议请求已经提交任务的状态
PRINT_VERSION:对log输出版本信息
(3)调用submit函数:
def doRunMain(): Unit = {
if (args.proxyUser != null) {
val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
UserGroupInformation.getCurrentUser())
try {
proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
override def run(): Unit = {
runMain(args, uninitLog)
} catch {
case e: Exception =>
// Hadoop's AuthorizationException suppresses the exception's stack trace, which
// makes the message printed to the output by the JVM not very helpful. Instead,
// detect exceptions with empty stack traces here, and treat them differently.
if (e.getStackTrace().length == 0) {
error(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}")
} else {
throw e
} else {
runMain(args, uninitLog)
}
doRunMain为集群调用子main class准备参数,然后调用runMain()执行任务invoke main
Spark在作业提交中会采用多种不同的参数及模式,都会根据不同的参数选择不同的分支执行,因此在最后提交的runMain中会将所需要的参数传递给执行函数。
以上就是Spark-submit执行流程是怎么样的,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注创新互联行业资讯频道。
文章标题:Spark-submit执行流程是怎么样的
浏览地址:
http://www.jawzsj.com/article/igepdj.html
ios开发用户协议 ios开发用户协议怎么写
百度搜索框样式css 实现百度搜索框
ios10开发视频教程 ios最新开发教程
android动漫 Android动漫软件
设置css样式什么 css样式要写在什么之间