If no
fields
are provided, the
multi_match
query defaults to the
index.query.default_field
index settings, which in turn defaults to
*
.
*
extracts all fields in the mapping that
are eligible to term queries and filters the metadata fields. All extracted fields are then
combined to build a query.
Field number limit
By default, there is a limit to the number of clauses a query can contain. This
limit is defined by the
indices.query.bool.max_clause_count
setting, which defaults to
4096
. For multi-match queries, the number of
clauses is calculated as the number of fields multiplied by the number of terms.
The way the
multi_match
query is executed internally depends on the
type
parameter, which can be set to:
Treats fields with the same
analyzer
as though they
were one big field. Looks for each word in
any
field. See
cross_fields
.
Creates a
match_bool_prefix
query on each field and
combines the
_score
from each field. See
bool_prefix
.
The
best_fields
type is most useful when you are searching for multiple
words best found in the same field. For instance “brown fox” in a single
field is more meaningful than “brown” in one field and “fox” in the other.
The
best_fields
type generates a
match
query
for
each field and wraps them in a
dis_max
query, to
find the single best matching field. For instance, this query:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'brown fox',
'type' => 'best_fields',
'fields' => [
'subject',
'message',
'tie_breaker' => 0.3,
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "brown fox",
"type": "best_fields",
"fields": ["subject", "message"],
"tie_breaker": 0.3,
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'brown fox',
type: 'best_fields',
fields: [
'subject',
'message'
tie_breaker: 0.3
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "brown fox",
"type": "best_fields",
"fields": [
"subject",
"message"
"tie_breaker": 0.3
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'brown fox',
type: 'best_fields',
fields: [
'subject',
'message'
tie_breaker: 0.3
console.log(response)
"query": "brown fox",
"type": "best_fields",
"fields": [ "subject", "message" ],
"tie_breaker": 0.3
would be executed as:
$params = [
'body' => [
'query' => [
'dis_max' => [
'queries' => [
'match' => [
'subject' => 'brown fox',
'match' => [
'message' => 'brown fox',
'tie_breaker' => 0.3,
$response = $client->search($params);
resp = client.search(
body={
"query": {
"dis_max": {
"queries": [
{"match": {"subject": "brown fox"}},
{"match": {"message": "brown fox"}},
"tie_breaker": 0.3,
print(resp)
response = client.search(
body: {
query: {
dis_max: {
queries: [
match: {
subject: 'brown fox'
match: {
message: 'brown fox'
tie_breaker: 0.3
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"dis_max": {
"queries": [
"match": {
"subject": "brown fox"
"match": {
"message": "brown fox"
"tie_breaker": 0.3
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
dis_max: {
queries: [
match: {
subject: 'brown fox'
match: {
message: 'brown fox'
tie_breaker: 0.3
console.log(response)
"queries": [
{ "match": { "subject": "brown fox" }},
{ "match": { "message": "brown fox" }}
"tie_breaker": 0.3
Normally the
best_fields
type uses the score of the
single
best matching
field, but if
tie_breaker
is specified, then it calculates the score as
follows:
the score from the best matching field
plus
tie_breaker * _score
for all other matching fields
Also, accepts
analyzer
,
boost
,
operator
,
minimum_should_match
,
fuzziness
,
lenient
,
prefix_length
,
max_expansions
,
fuzzy_rewrite
,
zero_terms_query
,
auto_generate_synonyms_phrase_query
and
fuzzy_transpositions
,
as explained in
match query
.
operator
and
minimum_should_match
The
best_fields
and
most_fields
types are
field-centric
— they generate
a
match
query
per field
. This means that the
operator
and
minimum_should_match
parameters are applied to each field individually,
which is probably not what you want.
Take this query for example:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'Will Smith',
'type' => 'best_fields',
'fields' => [
'first_name',
'last_name',
'operator' => 'and',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "Will Smith",
"type": "best_fields",
"fields": ["first_name", "last_name"],
"operator": "and",
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'Will Smith',
type: 'best_fields',
fields: [
'first_name',
'last_name'
operator: 'and'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "Will Smith",
"type": "best_fields",
"fields": [
"first_name",
"last_name"
"operator": "and"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'Will Smith',
type: 'best_fields',
fields: [
'first_name',
'last_name'
operator: 'and'
console.log(response)
"query": "Will Smith",
"type": "best_fields",
"fields": [ "first_name", "last_name" ],
"operator": "and"
This query is executed as:
(+first_name:will +first_name:smith)
| (+last_name:will +last_name:smith)
In other words,
all terms
must be present
in a single field
for a document
to match.
The
combined_fields
query offers a
term-centric approach that handles
operator
and
minimum_should_match
on a
per-term basis. The other multi-match mode
cross_fields
also
addresses this issue.
The
most_fields
type is most useful when querying multiple fields that
contain the same text analyzed in different ways. For instance, the main
field may contain synonyms, stemming and terms without diacritics. A second
field may contain the original terms, and a third field might contain
shingles. By combining scores from all three fields we can match as many
documents as possible with the main field, but use the second and third fields
to push the most similar results to the top of the list.
This query:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'quick brown fox',
'type' => 'most_fields',
'fields' => [
'title',
'title.original',
'title.shingles',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "quick brown fox",
"type": "most_fields",
"fields": ["title", "title.original", "title.shingles"],
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'quick brown fox',
type: 'most_fields',
fields: [
'title',
'title.original',
'title.shingles'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "quick brown fox",
"type": "most_fields",
"fields": [
"title",
"title.original",
"title.shingles"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'quick brown fox',
type: 'most_fields',
fields: [
'title',
'title.original',
'title.shingles'
console.log(response)
"query": "quick brown fox",
"type": "most_fields",
"fields": [ "title", "title.original", "title.shingles" ]
would be executed as:
$params = [
'body' => [
'query' => [
'bool' => [
'should' => [
'match' => [
'title' => 'quick brown fox',
'match' => [
'title.original' => 'quick brown fox',
'match' => [
'title.shingles' => 'quick brown fox',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"bool": {
"should": [
{"match": {"title": "quick brown fox"}},
{"match": {"title.original": "quick brown fox"}},
{"match": {"title.shingles": "quick brown fox"}},
print(resp)
response = client.search(
body: {
query: {
bool: {
should: [
match: {
title: 'quick brown fox'
match: {
'title.original' => 'quick brown fox'
match: {
'title.shingles' => 'quick brown fox'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"bool": {
"should": [
"match": {
"title": "quick brown fox"
"match": {
"title.original": "quick brown fox"
"match": {
"title.shingles": "quick brown fox"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
bool: {
should: [
match: {
title: 'quick brown fox'
match: {
'title.original': 'quick brown fox'
match: {
'title.shingles': 'quick brown fox'
console.log(response)
"should": [
{ "match": { "title": "quick brown fox" }},
{ "match": { "title.original": "quick brown fox" }},
{ "match": { "title.shingles": "quick brown fox" }}
The score from each
match
clause is added together, just like a
bool
query.
Also, accepts
analyzer
,
boost
,
operator
,
minimum_should_match
,
fuzziness
,
lenient
,
prefix_length
,
max_expansions
,
fuzzy_rewrite
, and
zero_terms_query
.
The
phrase
and
phrase_prefix
types behave just like
best_fields
,
but they use a
match_phrase
or
match_phrase_prefix
query instead of a
match
query.
This query:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'quick brown f',
'type' => 'phrase_prefix',
'fields' => [
'subject',
'message',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "quick brown f",
"type": "phrase_prefix",
"fields": ["subject", "message"],
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'quick brown f',
type: 'phrase_prefix',
fields: [
'subject',
'message'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "quick brown f",
"type": "phrase_prefix",
"fields": [
"subject",
"message"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'quick brown f',
type: 'phrase_prefix',
fields: [
'subject',
'message'
console.log(response)
"query": "quick brown f",
"type": "phrase_prefix",
"fields": [ "subject", "message" ]
would be executed as:
$params = [
'body' => [
'query' => [
'dis_max' => [
'queries' => [
'match_phrase_prefix' => [
'subject' => 'quick brown f',
'match_phrase_prefix' => [
'message' => 'quick brown f',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"dis_max": {
"queries": [
{"match_phrase_prefix": {"subject": "quick brown f"}},
{"match_phrase_prefix": {"message": "quick brown f"}},
print(resp)
response = client.search(
body: {
query: {
dis_max: {
queries: [
match_phrase_prefix: {
subject: 'quick brown f'
match_phrase_prefix: {
message: 'quick brown f'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"dis_max": {
"queries": [
"match_phrase_prefix": {
"subject": "quick brown f"
"match_phrase_prefix": {
"message": "quick brown f"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
dis_max: {
queries: [
match_phrase_prefix: {
subject: 'quick brown f'
match_phrase_prefix: {
message: 'quick brown f'
console.log(response)
"queries": [
{ "match_phrase_prefix": { "subject": "quick brown f" }},
{ "match_phrase_prefix": { "message": "quick brown f" }}
Also, accepts
analyzer
,
boost
,
lenient
and
zero_terms_query
as explained
in
Match
, as well as
slop
which is explained in
Match phrase
.
Type
phrase_prefix
additionally accepts
max_expansions
.
phrase
,
phrase_prefix
and
fuzziness
The
fuzziness
parameter cannot be used with the
phrase
or
phrase_prefix
type.
The
cross_fields
type is particularly useful with structured documents where
multiple fields
should
match. For instance, when querying the
first_name
and
last_name
fields for “Will Smith”, the best match is likely to have
“Will” in one field and “Smith” in the other.
This sounds like a job for
most_fields
but there are two problems
with that approach. The first problem is that
operator
and
minimum_should_match
are applied per-field, instead of per-term (see
explanation above
).
The second problem is to do with relevance: the different term frequencies in
the
first_name
and
last_name
fields can produce unexpected results.
For instance, imagine we have two people: “Will Smith” and “Smith Jones”.
“Smith” as a last name is very common (and so is of low importance) but
“Smith” as a first name is very uncommon (and so is of great importance).
If we do a search for “Will Smith”, the “Smith Jones” document will
probably appear above the better matching “Will Smith” because the score of
first_name:smith
has trumped the combined scores of
first_name:will
plus
last_name:smith
.
One way of dealing with these types of queries is simply to index the
first_name
and
last_name
fields into a single
full_name
field. Of
course, this can only be done at index time.
The
cross_field
type tries to solve these problems at query time by taking a
term-centric
approach. It first analyzes the query string into individual
terms, then looks for each term in any of the fields, as though they were one
big field.
A query like:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'Will Smith',
'type' => 'cross_fields',
'fields' => [
'first_name',
'last_name',
'operator' => 'and',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": ["first_name", "last_name"],
"operator": "and",
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'Will Smith',
type: 'cross_fields',
fields: [
'first_name',
'last_name'
operator: 'and'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": [
"first_name",
"last_name"
"operator": "and"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'Will Smith',
type: 'cross_fields',
fields: [
'first_name',
'last_name'
operator: 'and'
console.log(response)
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "first_name", "last_name" ],
"operator": "and"
is executed as:
+(first_name:will last_name:will)
+(first_name:smith last_name:smith)
In other words,
all terms
must be present
in at least one field
for a
document to match. (Compare this to
the logic used for
best_fields
and
most_fields
.)
That solves one of the two problems. The problem of differing term frequencies
is solved by
blending
the term frequencies for all fields in order to even
out the differences.
In practice,
first_name:smith
will be treated as though it has the same
frequencies as
last_name:smith
, plus one. This will make matches on
first_name
and
last_name
have comparable scores, with a tiny advantage
for
last_name
since it is the most likely field that contains
smith
.
Note that
cross_fields
is usually only useful on short string fields
that all have a
boost
of
1
. Otherwise boosts, term freqs and length
normalization contribute to the score in such a way that the blending of term
statistics is not meaningful anymore.
If you run the above query through the
Validate
, it returns this
explanation:
+blended("will", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])
Also, accepts
analyzer
,
boost
,
operator
,
minimum_should_match
,
lenient
and
zero_terms_query
.
The
cross_fields
type blends field statistics in a complex way that
can be hard to interpret. The score combination can even be incorrect, in
particular when some documents contain some of the search fields, but not all
of them. You should consider the
combined_fields
query as an alternative,
which is also term-centric but combines field statistics in a more robust way.
The
cross_field
type can only work in term-centric mode on fields that have
the same analyzer. Fields with the same analyzer are grouped together as in
the example above. If there are multiple groups, the query will use the best
score from any group.
For instance, if we have a
first
and
last
field which have
the same analyzer, plus a
first.edge
and
last.edge
which
both use an
edge_ngram
analyzer, this query:
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'Jon',
'type' => 'cross_fields',
'fields' => [
'first',
'first.edge',
'last',
'last.edge',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"fields": ["first", "first.edge", "last", "last.edge"],
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'Jon',
type: 'cross_fields',
fields: [
'first',
'first.edge',
'last',
'last.edge'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"fields": [
"first",
"first.edge",
"last",
"last.edge"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'Jon',
type: 'cross_fields',
fields: [
'first',
'first.edge',
'last',
'last.edge'
console.log(response)
blended("j", fields: [first.edge, last.edge])
blended("jo", fields: [first.edge, last.edge])
blended("jon", fields: [first.edge, last.edge])
In other words,
first
and
last
would be grouped together and
treated as a single field, and
first.edge
and
last.edge
would be
grouped together and treated as a single field.
Having multiple groups is fine, but when combined with
operator
or
minimum_should_match
, it can suffer from the
same problem
as
most_fields
or
best_fields
.
You can easily rewrite this query yourself as two separate
cross_fields
queries combined with a
dis_max
query, and apply the
minimum_should_match
parameter to just one of them:
resp = client.search(
body={
"query": {
"dis_max": {
"queries": [
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": ["first", "last"],
"minimum_should_match": "50%",
"multi_match": {
"query": "Will Smith",
"type": "cross_fields",
"fields": ["*.edge"],
print(resp)
response = client.search(
body: {
query: {
dis_max: {
queries: [
multi_match: {
query: 'Will Smith',
type: 'cross_fields',
fields: [
'first',
'last'
minimum_should_match: '50%'
multi_match: {
query: 'Will Smith',
type: 'cross_fields',
fields: [
'*.edge'
puts response
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "first", "last" ],
"minimum_should_match": "50%"
"multi_match" : {
"query": "Will Smith",
"type": "cross_fields",
"fields": [ "*.edge" ]
You can force all fields into the same group by specifying the
analyzer
parameter in the query.
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'Jon',
'type' => 'cross_fields',
'analyzer' => 'standard',
'fields' => [
'first',
'last',
'*.edge',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"analyzer": "standard",
"fields": ["first", "last", "*.edge"],
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'Jon',
type: 'cross_fields',
analyzer: 'standard',
fields: [
'first',
'last',
'*.edge'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "Jon",
"type": "cross_fields",
"analyzer": "standard",
"fields": [
"first",
"last",
"*.edge"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'Jon',
type: 'cross_fields',
analyzer: 'standard',
fields: [
'first',
'last',
'*.edge'
console.log(response)
"type": "cross_fields",
"analyzer": "standard",
"fields": [ "first", "last", "*.edge" ]
By default, each per-term
blended
query will use the best score returned by
any field in a group. Then when combining scores across groups, the query uses
the best score from any group. The
tie_breaker
parameter can change the
behavior for both of these steps:
The
bool_prefix
type’s scoring behaves like
most_fields
, but using a
match_bool_prefix
query
instead of a
match
query.
$params = [
'body' => [
'query' => [
'multi_match' => [
'query' => 'quick brown f',
'type' => 'bool_prefix',
'fields' => [
'subject',
'message',
$response = $client->search($params);
resp = client.search(
body={
"query": {
"multi_match": {
"query": "quick brown f",
"type": "bool_prefix",
"fields": ["subject", "message"],
print(resp)
response = client.search(
body: {
query: {
multi_match: {
query: 'quick brown f',
type: 'bool_prefix',
fields: [
'subject',
'message'
puts response
res, err := es.Search(
es.Search.WithBody(strings.NewReader(`{
"query": {
"multi_match": {
"query": "quick brown f",
"type": "bool_prefix",
"fields": [
"subject",
"message"
}`)),
es.Search.WithPretty(),
fmt.Println(res, err)
const response = await client.search({
body: {
query: {
multi_match: {
query: 'quick brown f',
type: 'bool_prefix',
fields: [
'subject',
'message'
console.log(response)
"query": "quick brown f",
"type": "bool_prefix",
"fields": [ "subject", "message" ]
The
analyzer
,
boost
,
operator
,
minimum_should_match
,
lenient
,
zero_terms_query
, and
auto_generate_synonyms_phrase_query
parameters as
explained in
match query
are supported. The
fuzziness
,
prefix_length
,
max_expansions
,
fuzzy_rewrite
, and
fuzzy_transpositions
parameters are supported for the terms that are used to
construct term queries, but do not have an effect on the prefix query
constructed from the final term.
The
slop
parameter is not supported by this query type.