添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

摘要:

使用早期数据准确预测电池剩余使用寿命(RUL)可以加速电池的改进和优化。然而电池退化过程是非线性的,且在早期阶段容量衰减可忽略不计,使得RUL预测具有挑战性。为解决这一问题,本工作使用电池早期循环数据,并构建WOA算法和XGBoost算法的混合预测模型预测RUL。文章首先对电池实验数据进行预处理,观察放电电压-容量退化曲线和容量增量曲线的变化,选取与实际容量状态相关性较高的潜在特征,并将其时间序列数据作为XGBoost预测模型的输入,然后采用WOA算法对模型进行参数优化。最后使用由丰田研究所提供的84个在多步充电和恒流放电条件下的锂离子电池数据进行验证,结果表明所提出模型仅使用前100个周期循环数据即可对整个电池寿命预测,测试误差低于4%。

Abstract:

Using early data to accurately predict the remaining service life (RUL) of a battery can accelerate the improvement and optimization of the battery. However, the battery degradation process is nonlinear, and the capacity attenuation can be neglected in the early stage, which makes the RUL prediction challenging. To solve this problem, this paper uses the early cycle data of batteries, and constructs a hybrid prediction model of the WOA algorithm and the XGBoost algorithm to predict RUL. In this study, the experimental data of batteries are preprocessed, and the changes in discharge voltage-capacity degradation curve and capacity increment curve are observed. Then, the potential characteristics with high a correlation as well as actual capacity state are selected, and the time series data are used as the input of the XGBoost prediction model. Then, the parameters of the model are optimized by the WOA algorithm. Finally, 84 battery data provided by Toyota Research Institute using multi-step charging and constant current discharging are used to verify the model. The results show that the proposed model can predict the whole battery life only using the data of the first 100 cycles, and the test error is 4%.

Key words: life prediction, early data, voltage characteristics, limit gradient lifting, whale optimization 曾伟, 熊俊杰, 李建林, 马速良, 武亦文. 基于权重自适应鲸鱼优化算法的多能系统储能电站最优配置 [J]. 储能科学与技术, 2022, 11(7): 2241-2249. 易顺民, 谢林柏, 彭力. 基于 VF-DW-DFN 的锂离子电池剩余寿命预测 [J]. 储能科学与技术, 2022, 11(7): 2305-2315. 易灵芝, 张宗光, 范朝冬, 罗显光, 李旺, 刘文翰. 基于 EEMD-GSGRU 的锂电池寿命预测 [J]. 储能科学与技术, 2020, 9(5): 1566-1573. 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述 [J]. 储能科学与技术, 2020, 9(3): 657-669. 凡注明本刊独家的版权为《储能科学与技术》所有,欢迎转载但请务必注明来源。如果本文侵犯您的权益,请联系本站删除!
凡注明“来源:XXX(非《储能科学与技术》)”,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。其他媒体如需转载,请与稿件来源方联系,如产生任何问题与本网无关。
地址:北京东城区青年湖南街13号化工出版社3层 电话:86-10-64519601/64519602/64519643 E-mail:[email protected]; [email protected]
京公网安备 11010102001997号 京ICP备12046843号-1