添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接


来源 | 芯论语

智库 | 云脑智库( CloudBrain-TT )

云圈 | “云脑智库 微信群 ”,请加微信: 15881101905 ,备注 研究方向

前言: 多年前,网上出现一组介绍集成电路(芯片)制造的漫画,而且有英文版。无论从专业角度还是漫画角度看,笔者认为漫画画的很棒!可惜网上漫画清晰度不高。笔者对这些漫画进行了清晰化,并配上了通俗的说明文字和示意图,整理成此文,试图以漫画为主、示意图和文字为辅,对芯片制造过程进行讲解。重点介绍在芯片上 集成 上百亿只 电路 元件的“ 十八般武功” ,力求形象生动和便于理解。网上引用这组漫画的文章都未标出漫画原创作者,若读者有相关信息,请不吝赐教。笔者核实后,将在文中列出漫画原创作者。(丽娟网友:漫画来源于SEAJ、东芝等)

小小芯片把人类带进信息化智能化世界,芯片和软件构成了信息化社会这座高楼大厦的基础。如果您对芯片还比较陌生,但近两年来,您已经知道了芯片超级重要后,一定想多了解一些芯片知识。下文将用漫画、示意图和说明等形式,通俗直观地对芯片及其制造过程进行介绍。

示意图1 带您认识一下用于制造芯片的 硅片 (晶圆),实现 芯片 功能的最小单元—— 晶体管 ,以及硅片、芯片和晶体管三者的关系。图中麒麟990是华为先进的5G智能手机芯片,采用7nm工艺制造,面积仅为113平方毫米(约1厘米见方,小手指甲大小),上面却集成了约103亿只晶体管。一只晶体管的三维(3D)结构如右上图所示。芯片制造厂采用的12英寸硅片的面积为70659平方毫米,用它大约可以生产600颗麒麟990芯片。

示意图2 左图是一张 芯片布图 (Layout)的局部,把它放大后,在其中找到了一个晶体管的布图,如红方框区域所示。一个晶体管在芯片中仅占头发丝横切面百分之一不到的面积,但它却是由复杂的电路结构组成。 晶体管从分布上看是平面的,但从横切面上看是立体的, 晶体管三维立体结构如上右图所示。芯片制造完成后,晶体管会“依托”硅片并“扎根”于硅片,上百亿只晶体管由纵横而不交错的金属线条连接起来,实现了芯片的功能。

如何在小手指甲大小的硅片上集成上百亿只晶体管等电路?在芯片制造时都用到了哪些高精尖的技术?下面就让机器人 小宝 带您走进芯片制造的微观世界,看看 集成电路制造 的神奇。

芯片细微无法言表,漫画粗旷只能示意。

一、芯片制造过程概述

芯片制造过程大致分为四个阶段。下图中,1-2的工序是 芯片设计流程 ,3-4-5-6的工序是 硅片制造流程 ,7-8-9-10-11的工序是在硅片上制造电路元件的 电路制造流程 ,12-13的工序是 收尾流程 。其中,硅片制造流程实际是芯片原材料加工过程,一般是在另外的专业工厂中完成。所以,硅片制造可以不包括在芯片制造过程中。本文为了让读者对芯片制造有全局了解,特把硅片制造也包含在芯片制造过程中。

(注:此漫画及后文所有漫画皆来源于网络文章,并经过了笔者加工整理。)

(一)芯片设计流程

芯片设计流程 中包括了电路设计和光刻掩膜版制作。 电路设计 就是通常所说的集成电路设计(芯片设计),它是芯片产业链(设计、制造、封装、测试和应用)的首要环节,电路设计的结果是 芯片布图 (Layout)。 光刻掩膜版制作 是把芯片布图拆分成几十层~上百层用于制造芯片的图纸,并把每层图纸制作成 光刻掩膜版 (Mask),它们将在芯片制造过程中使用。假设一个芯片布图拆分为n层光刻掩膜版,硅片上的 电路制造流程 各项工序就要循环n次。

1. 电路设计 这是晶体管等电路元件摆放、连线和模拟的“设计功”。 设计人员要在图形工作站上,利用EDA软件,把上百亿只晶体管等电路元件合理 摆放 (Place)在设计区域,上下左右、纵横而不交错地准确 连接 (Route)起来,从而实现预想的电路功能。并且芯片布图在送去制造之前,要反复进行精确地电路功能 模拟 (Simulation),以保证芯片设计万无一失。

示意图3 是Intel公司2000年发布的奔腾P4 CPU的芯片布图,该芯片采用180nm的工艺制造,其上集成了4200万只晶体管,该芯片是台式计算机的CPU。20年后的今天, 华为手机CPU芯片麒麟990采用7nm工艺制造,集成了103亿只晶体管,规模是Intel P4的245倍,并且速度更快。 现在智能手机的处理能力比二十年前的台式计算机要强很多倍,芯片技术的快速发展功不可没。

2. 光刻掩膜版制作 这是把芯片布图拆分成光刻掩膜版的“分层功”。 这个工序是芯片制造前的准备工作,分层就是按照芯片制造的工艺要求,把芯片布图拆分成多达几十层的光刻掩膜图形,并制成一层层的光刻掩膜版。传统光刻掩膜版是在很薄很平整的石英玻璃上沉积一层厚约150nm的铬膜,并按光刻图形做出透光与不透光的图形。

示意图4 是一个晶体管(示意图2所示)的一套光刻掩膜版图, 如果芯片上集成上百亿只晶体管的话,光刻掩膜版上图形数量将是它一百多亿倍,复杂程度可想而知。 光刻掩膜版类似于传统照相底版,它上面的图形只有透光和不透光的分区,并精细的多。而照相底版有半透光的过渡性区域,而且精度无法和光刻掩膜版相提并论。

(二)硅片制造流程

硅片制造流程包括了 单晶硅棒拉制 硅棒切片 硅片研磨 硅片氧化 共4个工序。硅片也叫晶圆,硅片制造也叫做硅晶圆制造。硅片制造一般是在另外的专业工厂完成,然后以原材料产品形式出售给芯片制造厂。硅片典型直径尺寸有4英寸(100mm)、6英寸(150mm)、8英寸(200mm)和12英寸(300mm)。

3. 单晶硅棒拉制 多晶硅到单晶硅的“单晶生长功”。 根据晶核排列是否同向,硅材料可分为单晶硅和多晶硅,半导体行业使用单晶硅,而且纯度要求为99.999999999%以上(业内简称 11N)。 单晶硅棒拉制 就是在多晶硅溶液中放入籽晶棒,在熔体温度、提拉速度、籽晶/石英坩埚的旋转速度等合适的条件下,随着籽晶棒边转动边缓缓地拉升,溶液中的晶核沿籽晶同向生长,一个以籽晶棒为中心的单晶硅棒就拉制出了。硅棒直径与条件控制和提拉速度有关。

4. 硅棒切片 硬碰硬地切片,要有切得很薄的“刀功”。 这道工序是把硅棒切割成硅片。由于硅棒直径和应用不同,硅棒切片的厚度也有差别。半导体用的硅片的切片厚度在450μm~750μm范围,太薄易脆裂不适合芯片制造。但太阳能用的硅片却是越薄越好,切片厚度仅为200μm左右(约2根头发丝的厚度),切割缝隙在120μm左右。由于硅棒非常坚硬,又要切的很薄,很考验设备的“刀功”。常见的硅棒切片方法为金刚线切割法和砂线切割法。

5. 硅片研磨 一丝不苟的“磨平功”。 成语中的“丝”如果是指头发丝的话,我这句话还应改为“万分之一丝不苟的‘磨平功’”。因为,半导体用的大硅片表面局部平整度(SFQD)要求小于设计线宽的2/3,如果大硅片用来制造14nm工艺的芯片,SFQD要求控制在10nm以内,即头发丝的万分之一。若选用7nm工艺,SFQD应小于5nm,硅片平整度要求更高。这道工序对研磨剂和研磨机都提出了很高的技术要求。

6. 硅片氧化 让半导体不导电的“绝缘功”。 半导体硅片可以经过加工变成导体,也可以经过加工变成绝缘体。这道工序是在硅片上生成一层很薄的氧化膜,使硅片表面成为绝缘体,为其后在硅片上制作电路元件做准备。氧化膜的成份是SiO2,具有良好的化学稳定性和电绝缘性,可用于晶体管栅极氧化膜、电绝缘层、电容器介质和屏蔽层等。硅片氧化工序还将在电路制造流程中多次应用,如果先做光刻再做氧化,将会在指定区域生成氧化膜,形成局部的绝缘保护。

(三)电路制造流程

准备好了硅片和光刻掩膜版,芯片制造就进入到了硅片表面电路制造的流程。该流程中包括了 光刻胶涂布 硅片表面上图形形成 刻蚀 氧化 扩散 CVD 粒子注入 平坦化 等工序。电路制造流程是一个循环流程,芯片成套的光刻掩膜版有多少层,这个流程就要循环多少次。每层光刻掩膜版表达的图形内容不同,流程中的个别工序也有可能被跳过。

7. 光刻胶涂布 在硅片上涂布光刻胶要有很好的“均匀功”。 一般旋转涂布光刻胶的厚度与光刻机曝光的光源波长有关(不同级别的曝光波长对应不同的光刻胶种类和分辨率)。厚度一般在200nm~500nm的范围。光刻胶是芯片制造的重要原材料,2019年7月日本为了抗议韩国法院对“韩国劳工”裁决,就用了光刻胶等原材料卡韩国的“脖子”,使韩国芯片产业一度困难。

示意图5 是一小块硅片上的硅片基底、氧化膜和感光胶的三层结构示意图。

8. 硅片表面图形形成 像传统照片洗印一样的“精准曝光功和洗印功”。 这道工序用来把光刻掩膜版上的图形投影到已涂布好的光刻胶上,进行精准曝光。这项工作由大名鼎鼎的 光刻机 来完成。在曝光之后,接下来要除去感光了的光刻胶,留下了未感光的光刻胶(假定使用了正性感光胶)。光刻掩膜版上的电路图形就精确地以光刻胶图形“做”在硅片的氧化膜上了。

示意图6 是光刻工艺中的曝光(上图)和除胶(下图)工序示意图,等同于传统照相过程中的曝光和洗印。感光胶有正负之分,感光的正性感光胶在显影除胶工序中被除去,保留了未被感光的部分。负性感光胶相反,未被感光的部分被除去,保留了被感光的部分。

9. 刻蚀 对光刻胶图形下的氧化膜进行“精准雕刻”。 这道工序用来把光刻胶覆盖的氧化膜保留,其它部分去掉。然后再把其余的光刻胶去除。这时,光刻掩膜版上的电路图形就精确地以氧化膜形式“做”在了硅片上。这项工作由 刻蚀机 来完成。工序7、8、9组成了芯片制造流程中最重要的 光刻工艺 (也称为 平面加工工艺 )。

示意图7 是把晶体管的第一张光刻掩膜版(示意图4)上的电路图形制作在氧化膜上的示意。同理,电路图形也可以制作在栅极多晶硅膜、绝缘钝化膜、蒸铝连线层上等。

10. 氧化、扩散、CVD和粒子注入 这是在硅片上“分区精加工的硬功”。 使用上述工序7、8、9的光刻工艺后,就可以在芯片的上指定区域进行多种 精加工 氧化 是在指定区域生成氧化膜; 扩散 是对指定区域定量掺入其它元素原子,改变该区域的电性能; CVD 是在指定区域沉积一层氧化硅、碳 化硅、多晶硅等半导体材料层; 离子注入 是向指定区域定量注入杂质的原子或粒子,使该区域的电性能发生变化。

示意图8 是制作晶体管的P型衬底(示意图2绿色区)的示意图。前道的光刻工艺在氧化膜上开了一个离子注入窗口,在这道 精加工 的工序中进行离子注入,使窗口下的硅片变为P型衬底。

11. 平坦化 电路图形表面“精确磨平功”。 在硅片上做了几层电路图形的“光刻”和“加工”循环(工序7、8、9、10)以后,有些地方刻蚀下去,有些地方生长上来,电路图形表面已变得凹凸不平。为了进行下一层的“光刻”和“加工”循环流程,首先要对电路图形表面进行平坦化。平坦化打磨要十分精确,打磨太深会损坏已做好的电路图形,打磨太浅电路图形表面依然不够平整。 平坦化工序完成后,跳回到工序7的光刻胶涂布,按照下一张光刻掩版开始下一循环的“光刻”和“精加工”过程。

示意图9 是高倍电子显微镜下看到的凹凸不平下层电路图形。

(四)收尾流程

收尾流程 中包括了电极形成和硅片检查两道工序,这是芯片制造最后的收尾工序,之后就可以进行芯片封装了。

12. 电极形成 金属材料蒸发和淀积的“金属化功”。 在电路制造循环完成之后,还要完成一层晶体管等电路元件表层的铝金属连线,并要把芯片引出电信号的连接电极做好。把铝、铜等金属蒸发成气体,传送到芯片表面,并淀积生成一层金属薄膜叫做金属化工艺,金属化是一项难度很大的技术功夫。

13. 硅片检查 从批量芯片中找出不良芯片的“火眼金睛功”。 在芯片封装之前,要对硅片上成百上千的芯片进行检查,标记出不良的芯片,以便在后续的芯片封装时弃之不用。

二、芯片封装流程概述

芯片封装流程包括了硅片切割、芯片置放、引线键合、塑封模压、切筋成型、劣化试验、产品检验、激光打标八个工序,如下图所示。该封装流程封装的芯片都是四边引线的塑料封装(包括DIP、SOP、QFP、PQFP、LCC、PLCC等),这是传统的二维(2D)封装形式,本文对其中的每道工序不做详细介绍。

(注:此漫画来源于网络文章, 并经过了笔者加工整理。)

示意图10 是目前芯片封装形式的全景图。分割线左侧是传统的2D塑料封装形式,右侧是更先进的新型封装形式,包括:以阵列引脚封装(PGA)、球栅阵列封装(BGA)、触点阵列封装(LGA)等为代表的球阵封装;晶圆级封装(WLP);系统级封装(SIP);堆叠封装(PoP);多芯片组封装(MCP)和芯片级封装(CSP)等。其中除了球阵封装外,其它都属于系统级或者三维(3D)先进封装。而且随着技术进步,新型封装技术将不断推陈出新,以满足各种新的应用需求。

(注:此图片来源于网络:今日半导体,并经过了笔者加工整理。)

结语: 芯片设计和硅片生产是芯片制造的前期准备,电路制造有三个重点内容要了解, 一是 硅片上的电路是按光刻掩膜版的顺序,一层层用光刻平面工艺循环加工而成,芯片上的电路元件是立体的。 二是 光刻工艺有4个步骤:涂胶、曝光、除胶、刻蚀,光刻是芯片技术的核心。 三是 每一循环加工都是由光刻和加工两个阶段组成,光刻指定了后续加工的范围、区域和窗口,后续加工是对硅片上材料真正的处理过程,包括氧化、扩散、CVD、离子注入、钝化等处理。

在芯片制造过程中,芯片设计阶段用到了电路元件摆放、连线和功能模拟的“设计功”、把芯片布图拆分成光刻掩膜版的“分层功”;硅片生产阶段用到了“单晶生长功”、“硅棒切片功”、“硅片磨平功”和“半导体绝缘功”;在电路制造阶段用到了光刻的“精准定位功”和“精细加工功”;在芯片封装阶段也有各种各样的真功夫。芯片制造中的真功夫是芯片高技术含量的具体体现。用漫画把这些真功夫都一一表达出来,其实是一件很难的事情。在此,笔者向文中所引用漫画原创作者致敬。

The End

声明: 欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为云脑智库。 本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。

投稿/招聘/推广/合作/入群/ 赞助 请加微信: 15881101905 ,备注关键词

微群关键词: 天线、射频微波、雷达通信电子战、芯片半导体、信号处理、软件无线电、测试制造、相控阵、EDA仿真、通导遥、学术前沿、知识服务、合作投资.

“阅读是一种习惯,分享是一种美德,我们是一群专业、有态度的知识传播者.”

阅读原文 加入 知识星球 ,发现更多精彩内容 .

///  先别走,安排点个“赞”和“在看”

登录阅读全文 免责声明: 该内容由专栏作者授权发布或作者转载,目的在于传递更多信息,并不代表本网赞同其观点,本站亦不保证或承诺内容真实性等。若内容或图片侵犯您的权益,请及时联系本站删除。侵权投诉联系: [email protected] 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享 请登录后参与评论回复 理想情况下,晶振应在基频或泛音模式下稳定工作。而在实际应用中,寄生振荡(Spur)可能会干扰主频信号导致主频发生偏移,有以下几点影响:    1. 频率不稳定:主频信号受到干扰后,频率漂移    2. 信号失真:输出波形失真并出现多频成分    3. 设备性能下降:导致电子系统无法正常运行或发生误操作    4. 降低信噪比:寄生振荡会引 koan-xtal 2024-10-20 06:41 可控硅光耦作为一种重要的光电耦合器件,广泛应用于新能源领域,为新能源技术的发展和应用提供了重要的支持。本文将探讨可控硅光耦在新能源领域的应用情况及其优势。可控硅光耦简介可控硅光耦是一种将输入光信号转换为输出控制电信号的光电耦合器件,具有高耐压、高耐温、高响应速度等特点。它主要由光源、光电转换元件和可控硅器件组成,可以实现光电隔离和电气控制的功能。可控硅光耦在新能源领域的应用1. 太阳能光伏系统可控硅光耦在太阳能光伏系统中广泛应用于光伏逆变器和充电控制器等关键电路中。通过可控硅光耦的控制,可以实现 2024-10-21 10:46 导读传统的ECU模拟工具通常需要依赖上位机软件来发起通信,这在离线场景和自动化产线中带来不便。为了应对这一挑战,虹科推出了创新的汽车总线离线模拟解决方案,基于PCAN-Router系列网关,通过内部可编程固件,实现了自主报文自发功能和实时离线通信,为工程师提供了一个高效、灵活且安全的测试平台。一、行业痛点ECU模拟工具是专为模拟车辆电子控制单元(ECU)之间的通信和行为而设计的软件/硬件设备。它们具备通信模拟、数据生成与处理、实时模拟能力、故障模拟功能,同时具有接口兼容性、调试分析功能和灵活的配 虹科汽车智能互联 2024-10-21 13:55 随着网络安全威胁的不断增加,了解并预防可能的攻击变得至关重要。Blast-RADIUS 是一种严重影响 RADIUS 协议的安全漏洞,能够让攻击者绕过身份验证获取未经授权的访问权限。本篇文章将深入探讨该漏洞的工作原理、检测方法及应对措施,帮助您有效防范潜在的安全风险。关于 Blast-RADIUS 的基础知识Blast-RADIUS 是一种影响 RADIUS 协议(依据 RFC 2865)的安全漏洞。它允许位于 RADIUS 客户端和服务器之间的中间人攻击者伪造一个有效的访问接受(access- 艾体宝IT 2024-10-18 11:22 178浏览 光耦合器隔离器在工业自动化中必不可少,可确保信号传输,同时保护敏感电子设备和人员免受高压影响。选择合适的光耦合器隔离器取决于对操作环境和隔离要求的了解。本文将重点介绍在为工业应用选择光耦合器隔离器时需要考虑的关键因素。 光耦合器隔离器在工业自动化中的作用在工业环境中,光耦合器隔离器在系统的不同部分之间提供电气隔离。这种隔离可保护低压控制电路免受高压电力电子设备的影响,使光耦合器在以下方面至关重要:PLC:安全地连接控制信号。电机驱动器:将控制电路与高压部分隔离。工业传感器:确保干净的信 腾恩科技-彭工 2024-10-18 16:30 全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,艾迈斯欧司朗携手微型投影模块供应商小象光显在第二十五届中国国际光电博览会(以下简称:CIOE)期间联合发布全新uLED智能投影灯MLP3000。这款极具创新的uLED智能投影灯由小象设计,采用了艾迈斯欧司朗前沿LED创新技术——EVIYOS® Shape LED,凭借其智能化、高亮度、低功耗的特点,可广泛应用于户外广告、文旅景观、商业展览等多元城市光影场景,助力打造极具交互感的视觉体验。EVIYOS® Shape 艾迈斯欧司朗 2024-10-18 15:45 本文介绍如何在OpenHarmony4.1 SDK中添加默认应用,本次使用了触觉智能Purple Pi OH鸿蒙开源主板,搭载了瑞芯微RK3566芯片,类树莓派设计,是Laval官方社区主荐的一款鸿蒙开发主板。近期第九届华为ICT大赛启动,有竞赛需求的同学们了解一下噢!1、开发流程将编译好的hap应用包放到applications/standard/hap下,如下图所示:2、新增Build配置路径:applications/standard/hap/BUILD.gn代码如下:ohos_prebu Industio_触觉智能 2024-10-18 11:58 132浏览 前一篇介绍了晶体振荡器(Crystal Oscillator, XO),这一篇介绍石英晶体谐振器(Quartz Crystal Resonator),简称 Quartz 或 XTAL。很多工程师习惯叫它“晶振”,也有人叫它“无源晶振”以便和XO区分。    这种元件结构简单:取一个晶体切片,两侧制作电极,电极用引线引出,外面加保护壳,就完成了。晶体周围除了必要的支撑点,没有其它固定物,以便晶体切片自由谐振。石英晶体质地坚硬而脆,因此这个元件天然就比 电子知识打边炉 2024-10-19 18:23 光耦合器固态继电器(SSR)是一种使用光耦合器进行信号隔离的电子开关设备,为传统机械继电器提供了可靠的替代方案。与依靠物理接触来打开和关闭电路的机械继电器不同,光耦合器SSR使用光信号进行切换,从而提高了性能和耐用性。光耦合器SSR的工作原理光耦合器SSR的功能是通过光耦合器将控制侧(输入)与负载侧(输出)隔离。施加控制电压时,光耦合器会传输光信号,从而激活半导体开关(例如三端双向可控硅开关、MOSFET或IGBT),以完成负载侧的电路。这种隔离可保护低压控制电路免受高压负载的影响,确保安全并减 克里雅半导体科技 2024-10-18 16:04 光耦合器晶体管是现代工业自动化中必不可少的组件,在确保信号完整性和保护敏感的低功耗控制系统方面发挥着关键作用。随着行业越来越依赖自动化技术来提高效率和精度,对高压机械和低压控制电路之间可靠隔离的需求变得至关重要。光耦合器晶体管提供这种电气隔离,保护控制系统免受潜在损坏的电压尖峰的影响,并确保工业自动化过程的平稳运行。主要应用可编程逻辑控制器(PLC)PLC是工业自动化系统的骨干,控制各种功能,例如过程控制、机械自动化和设备之间的通信。PLC内的光耦合器晶体管确保低压控制逻辑与高压电源电路保持隔离 克里雅半导体科技 2024-10-18 16:06 光耦合器固态继电器(SSR)取得了显著进步,与机械继电器相比,可提供卓越的电气隔离和可靠的切换。本文探讨了光耦合器SSR的最新创新及其与智能系统、物联网和电动汽车(EV)充电和可再生能源等新兴应用的集成。光耦合器SSR技术的当前趋势高速切换:配备先进光耦合器的现代SSR可提供更快的响应时间,使其成为数据传输和电机控制等高频应用的理想选择。提高效率:氮化镓(GaN)和碳化硅(SiC)等新型半导体材料可改善热管理,降低功耗并延长SSR使用寿命。小型化:集成光耦合器的紧凑型SSR正在为空间受限的设备开 腾恩科技-彭工 2024-10-18 16:28 在国内对于特种车辆有重点安全防范要求,"两客一危"是对道路运输车辆的一种分类方式,其中“两客”指的是客运车辆和公交车辆,而“一危”指的是危险货物运输车辆。这种分类方式主要用于强调这些车辆在道路运输中的特殊地位,因为它们通常需要满足更高的安全标准。在国内,“两客一危"车辆通常需要安装"部标机”,也就是满足特定部门标准的设备。这些设备可能包括但不限于定位设备、驾驶员行为监控设备、车辆定位系统等系统构件。随着安全管理意思的加强,在理解满足部标机要求的基础上,运营方往往提出更高要求、更多功能需求。T52 米尔电子嵌入式 2024-10-18 17:05 半导体技术作为现代科技的重要支柱之一,在电子、通信、能源等领域都有着广泛的应用。而在半导体领域,光耦作为一种重要的光电器件,正以其独特的优势和广泛的应用领域,为半导体创新注入新的活力,成为连接半导体创新的桥梁。实现电气与光学的转换在半导体器件的制造和应用过程中,经常需要将电气信号转换为光学信号,或者将光学信号转换为电气信号。而光耦作为一种光电转换器件,能够实现电气与光学之间的转换,为半导体器件的互联和应用提供了新的解决方案。通过光耦,可以实现对半导体器件的隔离、控制、数据传输和信号转换,提高了半 2024-10-21 10:48 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享 文章:4353篇 粉丝:139人