lda困惑度代码
时间: 2023-07-03 20:23:17
浏览: 144
以下是使用Python中gensim库计算LDA模型困惑度的示例代码:
```python
from gensim.models.ldamodel import LdaModel
from gensim.models.coherencemodel import CoherenceModel
from gensim.corpora.dictionary import Dictionary
# 加载[语料库](https://geek.csdn.net/educolumn/074f7fa36e7f212c39826682fe9c0168?spm=1055.2569.3001.10083)和词典
corpus = # 从文件或数据库加载[语料库](https://geek.csdn.net/educolumn/074f7fa36e7f212c39826682fe9c0168?spm=1055.2569.3001.10083)
dictionary = Dictionary.load('dictionary.dict')
# 训练LDA模型
lda_model = LdaModel(corpus=corpus, id2word=dictionary, num_topics=10)
# 计算困惑度
perplexity = lda_model.log_perplexity(corpus)
print("Perplexity:", perplexity)
# 计算一致性得分
coherence_model_lda = CoherenceModel(model=lda_model, texts=corpus, dictionary=dictionary, coherence='c_v')
coherence_lda = coherence_model_lda.get_coherence()
print("Coherence Score:", coherence_lda)
其中,`corpus`是一个由[文档](https://geek.csdn.net/edu/300981ef51993cfd737d329c71ba77f9?dp_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6NDQ0MDg2MiwiZXhwIjoxNzA3MzcxOTM4LCJpYXQiOjE3MDY3NjcxMzgsInVzZXJuYW1lIjoid2VpeGluXzY4NjQ1NjQ1In0.RrTYEnMNYPC7AQdoij4SBb0kKEgHoyvF-bZOG2eGQvc&spm=1055.2569.3001.10083)向量组成的[列表](https://geek.csdn.net/educolumn/ba94496e6cfa8630df5d047358ad9719?dp_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6NDQ0MDg2MiwiZXhwIjoxNzA3MzcxOTM4LCJpYXQiOjE3MDY3NjcxMzgsInVzZXJuYW1lIjoid2VpeGluXzY4NjQ1NjQ1In0.RrTYEnMNYPC7AQdoij4SBb0kKEgHoyvF-bZOG2eGQvc&spm=1055.2569.3001.10083),每个[文档](https://geek.csdn.net/edu/300981ef51993cfd737d329c71ba77f9?dp_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpZCI6NDQ0MDg2MiwiZXhwIjoxNzA3MzcxOTM4LCJpYXQiOjE3MDY3NjcxMzgsInVzZXJuYW1lIjoid2VpeGluXzY4NjQ1NjQ1In0.RrTYEnMNYPC7AQdoij4SBb0kKEgHoyvF-bZOG2eGQvc&spm=1055.2569.3001.10083)向量由词
相关推荐

















