添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
  • @feature_processor Decorator
  • Feature Processor Data Source
  • Feature Processor Scheduler and Triggers
  • Training APIs
  • Distributed Training APIs
  • Inference APIs
  • Governance APIs
  • Utility APIs
  • class sagemaker.feature_store.feature_group. FeatureGroup ( name = _Nothing.NOTHING , sagemaker_session = _Nothing.NOTHING , feature_definitions = _Nothing.NOTHING )

    Bases: object

    FeatureGroup definition.

    This class instantiates a FeatureGroup object that comprises of a name for the FeatureGroup, session instance, and a list of feature definition objects i.e., FeatureDefinition.

    Parameters
  • name ( str ) –

  • sagemaker_session ( Session ) –

  • feature_definitions ( Sequence [ FeatureDefinition ] ) –

  • sagemaker_session

    session instance to perform boto calls. If None, a new Session will be created.

    Session

    create ( s3_uri , record_identifier_name , event_time_feature_name , role_arn = None , online_store_kms_key_id = None , enable_online_store = False , ttl_duration = None , offline_store_kms_key_id = None , disable_glue_table_creation = False , data_catalog_config = None , description = None , tags = None , table_format = None , online_store_storage_type = None , throughput_config = None )

    Create a SageMaker FeatureStore FeatureGroup.

    Parameters
  • s3_uri ( Union [ str , bool ] ) – S3 URI of the offline store, set to False to disable offline store.

  • record_identifier_name ( str ) – name of the record identifier feature.

  • event_time_feature_name ( str ) – name of the event time feature.

  • role_arn ( str ) – ARN of the role used to call CreateFeatureGroup.

  • online_store_kms_key_id ( str ) – KMS key ARN for online store (default: None).

  • ttl_duration ( TtlDuration ) – Default time to live duration for records (default: None).

  • enable_online_store ( bool ) – whether to enable online store or not (default: False).

  • offline_store_kms_key_id ( str ) – KMS key ARN for offline store (default: None). If a KMS encryption key is not specified, SageMaker encrypts all data at rest using the default AWS KMS key. By defining your bucket-level key for SSE, you can reduce the cost of AWS KMS requests. For more information, see Bucket Key in the Amazon S3 User Guide.

  • disable_glue_table_creation ( bool ) – whether to turn off Glue table creation or not (default: False).

  • data_catalog_config ( DataCatalogConfig ) – configuration for Metadata store (default: None).

  • description ( str ) – description of the FeatureGroup (default: None).

  • tags ( Optional [ Tags ] ) – Tags for labeling a FeatureGroup (default: None).

  • table_format ( TableFormatEnum ) – format of the offline store table (default: None).

  • online_store_storage_type ( OnlineStoreStorageTypeEnum ) – storage type for the online store (default: None).

  • throughput_config ( ThroughputConfig ) – throughput configuration of the feature group (default: None).

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    update ( feature_additions = None , online_store_config = None , throughput_config = None )

    Update a FeatureGroup and add new features from the given feature definitions.

    Parameters
  • feature_additions ( Sequence [ Dict [ str , str ] ) – list of feature definitions to be updated.

  • online_store_config ( OnlineStoreConfigUpdate ) – online store config to be updated.

  • throughput_config ( ThroughputConfigUpdate ) – target throughput configuration

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    update_feature_metadata ( feature_name , description = None , parameter_additions = None , parameter_removals = None )

    Update a feature metadata and add/remove metadata.

    Parameters
  • feature_name ( str ) – name of the feature to update.

  • description ( str ) – description of the feature to update.

  • parameter_additions ( Sequence [ Dict [ str , str ] ) – list of feature parameter to be added.

  • parameter_removals ( Sequence [ str ] ) – list of feature parameter key to be removed.

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    list_parameters_for_feature_metadata ( feature_name )

    List all parameters for a feature metadata.

    Parameters

    feature_name ( str ) – name of the feature.

    Returns

    list of key, value pair of the parameters.

    Return type

    Sequence [ Dict [ str , str ]]

    load_feature_definitions ( data_frame , online_storage_type = None )

    Load feature definitions from a Pandas DataFrame.

    Column name is used as feature name. Feature type is inferred from the dtype of the column. Dtype int_ , int8, int16, int32, int64, uint8, uint16, uint32 and uint64 are mapped to Integral feature type. Dtype float_ , float16, float32 and float64 are mapped to Fractional feature type. string dtype is mapped to String feature type.

    No feature definitions will be loaded if the given data_frame contains unsupported dtypes.

    For IN_MEMORY online_storage_type all collection type columns within DataFrame will be inferred as a List, instead of a String. Due to performance limitations, only first 1,000 values of the column will be sampled, when inferring collection Type. Customers can manually update the inferred collection type as needed.

    Parameters
  • data_frame ( DataFrame ) – A Pandas DataFrame containing features.

  • online_storage_type ( OnlineStoreStorageTypeEnum ) – Optional. Online storage type for the feature group. The value can be either STANDARD or IN_MEMORY If not specified,STANDARD will be used by default. If specified as IN_MEMORY, we will infer any collection type column within DataFrame as a List instead of a String. All, collection types (List, Set and Vector) will be inferred as List. We will only sample the first 1,000 values of the column when inferring collection Type.

  • Returns

    list of FeatureDefinition

    Return type

    Sequence [ FeatureDefinition ]

    get_record ( record_identifier_value_as_string , feature_names = None )

    Get a single record in a FeatureGroup

    Parameters
  • record_identifier_value_as_string ( String ) – a String representing the value of the record identifier.

  • feature_names ( Sequence [ String ] ) – a list of Strings representing feature names.

  • Return type

    Sequence [ Dict [ str , str ]]

    put_record ( record , target_stores = None , ttl_duration = None )

    Put a single record in the FeatureGroup.

    Parameters
  • record ( Sequence [ FeatureValue ] ) – a list contains feature values.

  • target_stores ( Sequence [ str ] ) – a list of target stores.

  • ttl_duration ( TtlDuration ) – customer specified ttl duration.

  • delete_record ( record_identifier_value_as_string , event_time , deletion_mode = DeletionModeEnum.SOFT_DELETE )

    Delete a single record from a FeatureGroup.

    Parameters
  • record_identifier_value_as_string ( String ) – a String representing the value of the record identifier.

  • event_time ( String ) – a timestamp format String indicating when the deletion event occurred.

  • deletion_mode ( DeletionModeEnum ) – deletion mode for deleting record. (default: DetectionModeEnum.SOFT_DELETE)

  • ingest ( data_frame , target_stores = None , max_workers = 1 , max_processes = 1 , wait = True , timeout = None , profile_name = None )

    Ingest the content of a pandas DataFrame to feature store.

    max_worker the number of threads created to work on different partitions of the data_frame in parallel.

    max_processes the number of processes will be created to work on different partitions of the data_frame in parallel, each with max_worker threads.

    The ingest function attempts to ingest all records in the data frame. SageMaker Feature Store throws an exception if it fails to ingest any records.

    If wait is True , Feature Store runs the ingest function synchronously. You receive an IngestionError if there are any records that can’t be ingested. If wait is False , Feature Store runs the ingest function asynchronously.

    Instead of setting wait to True in the ingest function, you can invoke the wait function on the returned instance of IngestionManagerPandas to run the ingest function synchronously.

    To access the rows that failed to ingest, set wait to False . The IngestionError.failed_rows object saves all the rows that failed to ingest.

    profile_name argument is an optional one. It will use the default credential if None is passed. This profile_name is used in the sagemaker_featurestore_runtime client only. See https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html for more about the default credential.

    Parameters
  • data_frame ( DataFrame ) – data_frame to be ingested to feature store.

  • target_stores ( Sequence [ TargetStoreEnum ] ) – target stores to be used for ingestion. (default: None).

  • max_workers ( int ) – number of threads to be created.

  • max_processes ( int ) – number of processes to be created. Each process spawns max_worker number of threads.

  • wait ( bool ) – whether to wait for the ingestion to finish or not.

  • timeout ( Union [ int , float ] ) – concurrent.futures.TimeoutError will be raised if timeout is reached.

  • profile_name ( str ) – the profile credential should be used for PutRecord (default: None).

  • Returns

    An instance of IngestionManagerPandas.

    Return type

    IngestionManagerPandas

    as_hive_ddl ( database = 'sagemaker_featurestore' , table_name = None )

    Generate Hive DDL commands to define or change structure of tables or databases in Hive.

    Schema of the table is generated based on the feature definitions. Columns are named after feature name and data-type are inferred based on feature type. Integral feature type is mapped to INT data-type. Fractional feature type is mapped to FLOAT data-type. String feature type is mapped to STRING data-type.

    Parameters
  • database ( str ) – name of the database. If not set “sagemaker_featurestore” will be used.

  • table_name ( Optional [ str ] ) – name of the table. If not set the name of this feature group will be used.

  • Returns

    Generated create table DDL string.

    Return type
    class sagemaker.feature_store.feature_group. AthenaQuery ( catalog , database , table_name , sagemaker_session )

    Bases: object

    Class to manage querying of feature store data with AWS Athena.

    This class instantiates a AthenaQuery object that is used to retrieve data from feature store via standard SQL queries.

    Parameters
  • catalog ( str ) –

  • database ( str ) –

  • table_name ( str ) –

  • sagemaker_session ( Session ) –

  • run ( query_string , output_location , kms_key = None , workgroup = None )

    Execute a SQL query given a query string, output location and kms key.

    This method executes the SQL query using Athena and outputs the results to output_location and returns the execution id of the query.

    Parameters
  • query_string ( str ) – SQL query string.

  • output_location ( str ) – S3 URI of the query result.

  • kms_key ( Optional [ str ] ) – KMS key id. If set, will be used to encrypt the query result file.

  • workgroup ( str ) – The name of the workgroup in which the query is being started.

  • Returns

    Execution id of the query.

    Return type
    as_dataframe ( ** kwargs )

    Download the result of the current query and load it into a DataFrame.

    Parameters

    **kwargs ( object ) – key arguments used for the method pandas.read_csv to be able to have a better tuning on data. For more info read: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

    Returns

    A pandas DataFrame contains the query result.

    Return type

    DataFrame

    class sagemaker.feature_store.feature_group. IngestionManagerPandas ( feature_group_name , feature_definitions , sagemaker_fs_runtime_client_config = None , sagemaker_session = None , max_workers = 1 , max_processes = 1 , profile_name = None , async_result = None , processing_pool = None , failed_indices = _Nothing.NOTHING )

    Bases: object

    Class to manage the multi-threaded data ingestion process.

    This class will manage the data ingestion process which is multi-threaded.

    Parameters
  • feature_group_name ( str ) –

  • feature_definitions ( Dict [ str , Dict [ Any , Any ] ] ) –

  • sagemaker_fs_runtime_client_config ( Config ) –

  • sagemaker_session ( Session ) –

  • max_workers ( int ) –

  • max_processes ( int ) –

  • profile_name ( str ) –

  • async_result ( AsyncResult ) –

  • processing_pool ( ProcessingPool ) –

  • failed_indices ( List [ int ] ) –

  • feature_definitions

    dictionary of feature definitions. where the key is the feature name and the value is the FeatureDefinition. The FeatureDefinition contains the data type of the feature.

    Dict[ str , Dict[Any, Any]]

    Parameters

    timeout ( Union [ int , float ] ) – concurrent.futures.TimeoutError will be raised if timeout is reached.

    run ( data_frame , target_stores = None , wait = True , timeout = None )

    Start the ingestion process.

    Parameters
  • data_frame ( DataFrame ) – source DataFrame to be ingested.

  • target_stores ( Sequence [ TargetStoreEnum ] ) – list of target stores to be used for the ingestion. If None, the default target store is used.

  • wait ( bool ) – whether to wait for the ingestion to finish or not.

  • timeout ( Union [ int , float ] ) – concurrent.futures.TimeoutError will be raised if timeout is reached.

  • class sagemaker.feature_store.feature_definition. FeatureDefinition ( feature_name , feature_type , collection_type = None )

    Bases: Config

    Feature definition.

    This instantiates a Feature Definition object where FeatureDefinition is a subclass of Config.

    Parameters
  • feature_name ( str ) –

  • feature_type ( FeatureTypeEnum ) –

  • collection_type ( CollectionType ) –

  • class sagemaker.feature_store.feature_definition. FractionalFeatureDefinition ( feature_name , collection_type = None )

    Bases: FeatureDefinition

    Fractional feature definition.

    This class instantiates a FractionalFeatureDefinition object, a subclass of FeatureDefinition where the data type of the feature being defined is a Fractional.

    feature_name

    The name of the feature

    class sagemaker.feature_store.feature_definition. IntegralFeatureDefinition ( feature_name , collection_type = None )

    Bases: FeatureDefinition

    Fractional feature definition.

    This class instantiates a IntegralFeatureDefinition object, a subclass of FeatureDefinition where the data type of the feature being defined is a Integral.

    feature_name

    the name of the feature.

    class sagemaker.feature_store.feature_definition. StringFeatureDefinition ( feature_name , collection_type = None )

    Bases: FeatureDefinition

    Fractional feature definition.

    This class instantiates a StringFeatureDefinition object, a subclass of FeatureDefinition where the data type of the feature being defined is a String.

    feature_name

    the name of the feature.

    class sagemaker.feature_store.feature_definition. FeatureTypeEnum ( value )

    Bases: Enum

    Enum of feature types.

    The data type of a feature can be Fractional, Integral or String.

    class sagemaker.feature_store.feature_definition. CollectionTypeEnum ( value )

    Bases: Enum

    Enum of collection types.

    The collection type of a feature can be List, Set or Vector.

    class sagemaker.feature_store.feature_definition. CollectionType ( collection_type , collection_config )

    Bases: Config

    Collection type and its configuration.

    This initiates a collectiontype object where CollectionType is a subclass of Config.

    Parameters
  • collection_type ( CollectionTypeEnum ) –

  • collection_config ( Dict [ str , Any ] ) –

  • class sagemaker.feature_store.feature_definition. ListCollectionType

    Bases: CollectionType

    List collection type

    This class instantiates a ListCollectionType object, as subclass of CollectionType where the collection type is defined as List.

    Construct an instance of ListCollectionType.

    class sagemaker.feature_store.feature_definition. SetCollectionType

    Bases: CollectionType

    Set collection type

    This class instantiates a SetCollectionType object, as subclass of CollectionType where the collection type is defined as Set.

    Construct an instance of SetCollectionType.

    class sagemaker.feature_store.feature_definition. VectorCollectionType ( dimension )

    Bases: CollectionType

    Vector collection type

    This class instantiates a VectorCollectionType object, as subclass of CollectionType where the collection type is defined as Vector.

    Parameters

    dimension ( int ) –

    class sagemaker.feature_store.inputs. Config

    Bases: ABC

    Base config object for FeatureStore.

    Configs must implement the to_dict method.

    abstract to_dict ( )

    Get the dictionary from attributes.

    Returns

    dict contains the attributes.

    Return type

    Dict [ str , Any ]

    class sagemaker.feature_store.inputs. DataCatalogConfig ( table_name = _Nothing.NOTHING , catalog = _Nothing.NOTHING , database = _Nothing.NOTHING )

    Bases: Config

    DataCatalogConfig for FeatureStore.

    Parameters
  • table_name ( str ) –

  • catalog ( str ) –

  • database ( str ) –

  • class sagemaker.feature_store.inputs. OfflineStoreConfig ( s3_storage_config , disable_glue_table_creation = False , data_catalog_config = None , table_format = None )

    Bases: Config

    OfflineStoreConfig for FeatureStore.

    Parameters
  • s3_storage_config ( S3StorageConfig ) –

  • disable_glue_table_creation ( bool ) –

  • data_catalog_config ( DataCatalogConfig ) –

  • table_format ( TableFormatEnum ) –

  • class sagemaker.feature_store.inputs. ThroughputConfig ( mode = None , provisioned_read_capacity_units = None , provisioned_write_capacity_units = None )

    Bases: Config

    Throughput configuration of the feature group.

    Throughput configuration can be ON_DEMAND, or PROVISIONED with valid values for read and write capacity units. ON_DEMAND works best for less predictable traffic, while PROVISIONED works best for consistent and predictable traffic.

    Parameters
  • mode ( ThroughputModeEnum ) –

  • provisioned_read_capacity_units ( int ) –

  • provisioned_write_capacity_units ( int ) –

  • provisioned_read_capacity_units

    For provisioned feature groups, this indicates the read throughput you are billed for and can consume without throttling.

    provisioned_write_capacity_units

    For provisioned feature groups, this indicates the write throughput you are billed for and can consume without throttling.

    class sagemaker.feature_store.inputs. ThroughputConfigUpdate ( mode = None , provisioned_read_capacity_units = None , provisioned_write_capacity_units = None )

    Bases: Config

    Target throughput configuration for the feature group.

    Target throughput configuration can be ON_DEMAND, or PROVISIONED with valid values for read and write capacity units. ON_DEMAND works best for less predictable traffic, while PROVISIONED works best for consistent and predictable traffic.

    Parameters
  • mode ( ThroughputModeEnum ) –

  • provisioned_read_capacity_units ( int ) –

  • provisioned_write_capacity_units ( int ) –

  • provisioned_read_capacity_units

    For provisioned feature groups, this indicates the read throughput you are billed for and can consume without throttling.

    provisioned_write_capacity_units

    For provisioned feature groups, this indicates the write throughput you are billed for and can consume without throttling.

    class sagemaker.feature_store.inputs. OnlineStoreConfig ( enable_online_store = True , online_store_security_config = None , ttl_duration = None , storage_type = None )

    Bases: Config

    OnlineStoreConfig for FeatureStore.

    Parameters
  • enable_online_store ( bool ) –

  • online_store_security_config ( OnlineStoreSecurityConfig ) –

  • ttl_duration ( TtlDuration ) –

  • storage_type ( OnlineStoreStorageTypeEnum ) –

  • class sagemaker.feature_store.inputs. OnlineStoreSecurityConfig ( kms_key_id = _Nothing.NOTHING )

    Bases: Config

    OnlineStoreSecurityConfig for FeatureStore.

    Parameters

    kms_key_id ( str ) –

    class sagemaker.feature_store.inputs. TtlDuration ( unit , value )

    Bases: Config

    TtlDuration for records in online FeatureStore.

    Parameters
  • unit ( str ) –

  • value ( int ) –

  • class sagemaker.feature_store.inputs. S3StorageConfig ( s3_uri , kms_key_id = None )

    Bases: Config

    S3StorageConfig for FeatureStore.

    Parameters
  • s3_uri ( str ) –

  • kms_key_id ( str ) –

  • class sagemaker.feature_store.inputs. FeatureValue ( feature_name = None , value_as_string = None , value_as_string_list = None )

    Bases: Config

    FeatureValue for FeatureStore.

    Parameters
  • feature_name ( str ) –

  • value_as_string ( str ) –

  • value_as_string_list ( List [ str ] ) –

  • class sagemaker.feature_store.inputs. TableFormatEnum ( value )

    Bases: Enum

    Enum of table formats.

    The offline store table formats can be Glue or Iceberg.

    class sagemaker.feature_store.inputs. OnlineStoreStorageTypeEnum ( value )

    Bases: Enum

    Enum of storage types for online store.

    The online store storage types can be Standard or InMemory.

    class sagemaker.feature_store.inputs. ThroughputModeEnum ( value )

    Bases: Enum

    Enum of throughput modes supported by feature group.

    Throughput mode of feature group can be ON_DEMAND or PROVISIONED.

    class sagemaker.feature_store.inputs. ResourceEnum ( value )

    Bases: Enum

    Enum of resources.

    The data type of resource can be FeatureGroup or FeatureMetadata .

    class sagemaker.feature_store.inputs. SearchOperatorEnum ( value )

    Bases: Enum

    Enum of search operators.

    The data type of search operator can be And or Or .

    class sagemaker.feature_store.inputs. SortOrderEnum ( value )

    Bases: Enum

    Enum of sort orders.

    The data type of sort order can be Ascending or Descending .

    class sagemaker.feature_store.inputs. FilterOperatorEnum ( value )

    Bases: Enum

    Enum of filter operators.

    The data type of filter operator can be Equals , NotEquals , GreaterThan , GreaterThanOrEqualTo , LessThan , LessThanOrEqualTo , Contains , Exists , NotExists , or In .

    class sagemaker.feature_store.inputs. Filter ( name , value , operator = None )

    Bases: Config

    Filter for FeatureStore search.

    Parameters
  • name ( str ) –

  • value ( str ) –

  • operator ( FilterOperatorEnum ) –

  • value

    A value used with Name and Operator to determine which resources satisfy the filter’s condition.

    class sagemaker.feature_store.inputs. Identifier ( feature_group_name , record_identifiers_value_as_string , feature_names = None )

    Bases: Config

    Identifier of batch get record API.

    Parameters
  • feature_group_name ( str ) –

  • record_identifiers_value_as_string ( List [ str ] ) –

  • feature_names ( List [ str ] ) –

  • class sagemaker.feature_store.inputs. FeatureParameter ( key = None , value = None )

    Bases: Config

    FeatureParameter for FeatureStore.

    Parameters
  • key ( str ) –

  • value ( str ) –

  • class sagemaker.feature_store.dataset_builder. DatasetBuilder ( sagemaker_session , base , output_path , record_identifier_feature_name = None , event_time_identifier_feature_name = None , included_feature_names = None , kms_key_id = None , event_time_identifier_feature_type = None )

    Bases: object

    DatasetBuilder definition.

    This class instantiates a DatasetBuilder object that comprises a base, a list of feature names, an output path and a KMS key ID.

    Parameters
  • sagemaker_session ( Session ) –

  • base ( Union [ FeatureGroup , DataFrame ] ) –

  • output_path ( str ) –

  • record_identifier_feature_name ( str ) –

  • event_time_identifier_feature_name ( str ) –

  • included_feature_names ( List [ str ] ) –

  • kms_key_id ( str ) –

  • event_time_identifier_feature_type ( FeatureTypeEnum ) –

  • _base

    A base which can be either a FeatureGroup or a pandas.DataFrame and will be used to merge other FeatureGroups and generate a Dataset.

    Union[ FeatureGroup , DataFrame]

    _record_identifier_feature_name

    A string representing the record identifier feature if base is a DataFrame (default: None).

    _event_time_identifier_feature_name

    A string representing the event time identifier feature if base is a DataFrame (default: None).

    _included_feature_names

    A list of strings representing features to be included in the output. If not set, all features will be included in the output. (default: None).

    List[ str ]

    _kms_key_id

    A KMS key id. If set, will be used to encrypt the result file (default: None).

    _point_in_time_accurate_join

    A boolean representing if point-in-time join is applied to the resulting dataframe when calling “to_dataframe”. When set to True, users can retrieve data using “row-level time travel” according to the event times provided to the DatasetBuilder. This requires that the entity dataframe with event times is submitted as the base in the constructor (default: False).

    _include_duplicated_records

    A boolean representing whether the resulting dataframe when calling “to_dataframe” should include duplicated records (default: False).

    _include_deleted_records

    A boolean representing whether the resulting dataframe when calling “to_dataframe” should include deleted records (default: False).

    _number_of_recent_records

    An integer representing how many records will be returned for each record identifier (default: 1).

    _number_of_records

    An integer representing the number of records that should be returned in the resulting dataframe when calling “to_dataframe” (default: None).

    _write_time_ending_timestamp

    A datetime that represents the latest write time for a record to be included in the resulting dataset. Records with a newer write time will be omitted from the resulting dataset. (default: None).

    datetime.datetime

    _event_time_starting_timestamp

    A datetime that represents the earliest event time for a record to be included in the resulting dataset. Records with an older event time will be omitted from the resulting dataset. (default: None).

    datetime.datetime

    _event_time_ending_timestamp

    A datetime that represents the latest event time for a record to be included in the resulting dataset. Records with a newer event time will be omitted from the resulting dataset. (default: None).

    datetime.datetime

    _feature_groups_to_be_merged

    A list of FeatureGroupToBeMerged which will be joined to base (default: []).

    List[FeatureGroupToBeMerged]

    _event_time_identifier_feature_type

    A FeatureTypeEnum representing the type of event time identifier feature (default: None).

    FeatureTypeEnum

    with_feature_group ( feature_group , target_feature_name_in_base = None , included_feature_names = None , feature_name_in_target = None , join_comparator = JoinComparatorEnum.EQUALS , join_type = JoinTypeEnum.INNER_JOIN )

    Join FeatureGroup with base.

    Parameters
  • feature_group ( FeatureGroup ) – A target FeatureGroup which will be joined to base.

  • target_feature_name_in_base ( str ) – A string representing the feature name in base which will be used as a join key (default: None).

  • included_feature_names ( List [ str ] ) – A list of strings representing features to be included in the output (default: None).

  • feature_name_in_target ( str ) – A string representing the feature name in the target feature group that will be compared to the target feature in the base feature group. If None is provided, the record identifier feature will be used in the SQL join. (default: None).

  • join_comparator ( JoinComparatorEnum ) – A JoinComparatorEnum representing the comparator used when joining the target feature in the base feature group and the feature in the target feature group. (default: JoinComparatorEnum.EQUALS).

  • join_type ( JoinTypeEnum ) – A JoinTypeEnum representing the type of join between the base and target feature groups. (default: JoinTypeEnum.INNER_JOIN).

  • Returns – This DatasetBuilder object.

  • with_number_of_recent_records_by_record_identifier ( number_of_recent_records )

    Set number_of_recent_records field with provided input.

    Parameters

    number_of_recent_records ( int ) – An int that how many recent records will be returned for each record identifier.

    Returns

    This DatasetBuilder object.

    with_number_of_records_from_query_results ( number_of_records )

    Set number_of_records field with provided input.

    Parameters

    number_of_records ( int ) – An int that how many records will be returned.

    Returns

    This DatasetBuilder object.

    Parameters

    timestamp ( datetime.datetime ) – A datetime that all records’ write time in dataset will be before it.

    Returns

    This DatasetBuilder object.

    with_event_time_range ( starting_timestamp = None , ending_timestamp = None )

    Set event_time_starting_timestamp and event_time_ending_timestamp with provided inputs.

    Parameters
  • starting_timestamp ( datetime.datetime ) – A datetime that all records’ event time in dataset will be after it (default: None).

  • ending_timestamp ( datetime.datetime ) – A datetime that all records’ event time in dataset will be before it (default: None).

  • Returns

    This DatasetBuilder object.

    class sagemaker.feature_store.feature_store. FeatureStore ( sagemaker_session=<class 'sagemaker.session.Session'> )

    Bases: object

    FeatureStore definition.

    This class instantiates a FeatureStore object that comprises a SageMaker session instance.

    Parameters

    sagemaker_session ( Session ) –

    create_dataset ( base , output_path , record_identifier_feature_name = None , event_time_identifier_feature_name = None , included_feature_names = None , kms_key_id = None )

    Create a Dataset Builder for generating a Dataset.

    Parameters
  • base ( Union [ FeatureGroup , DataFrame ] ) – A base which can be either a FeatureGroup or a pandas.DataFrame and will be used to merge other FeatureGroups and generate a Dataset.

  • output_path ( str ) – An S3 URI which stores the output .csv file.

  • record_identifier_feature_name ( str ) – A string representing the record identifier feature if base is a DataFrame (default: None).

  • event_time_identifier_feature_name ( str ) – A string representing the event time identifier feature if base is a DataFrame (default: None).

  • included_feature_names ( List [ str ] ) – A list of features to be included in the output (default: None).

  • kms_key_id ( str ) – An KMS key id. If set, will be used to encrypt the result file (default: None).

  • Raises

    ValueError – Base is a Pandas DataFrame but no record identifier feature name nor event time identifier feature name is provided.

    Return type

    DatasetBuilder

    list_feature_groups ( name_contains = None , feature_group_status_equals = None , offline_store_status_equals = None , creation_time_after = None , creation_time_before = None , sort_order = None , sort_by = None , max_results = None , next_token = None )

    List all FeatureGroups satisfying given filters.

    Parameters
  • name_contains ( str ) – A string that partially matches one or more FeatureGroups’ names. Filters FeatureGroups by name.

  • feature_group_status_equals ( str ) – A FeatureGroup status. Filters FeatureGroups by FeatureGroup status.

  • offline_store_status_equals ( str ) – An OfflineStore status. Filters FeatureGroups by OfflineStore status.

  • creation_time_after ( datetime.datetime ) – Use this parameter to search for FeatureGroups created after a specific date and time.

  • creation_time_before ( datetime.datetime ) – Use this parameter to search for FeatureGroups created before a specific date and time.

  • sort_order ( str ) – The order in which FeatureGroups are listed.

  • sort_by ( str ) – The value on which the FeatureGroup list is sorted.

  • max_results ( int ) – The maximum number of results returned by ListFeatureGroups.

  • next_token ( str ) – A token to resume pagination of ListFeatureGroups results.

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    batch_get_record ( identifiers , expiration_time_response = None )

    Get record in batch from FeatureStore

    Parameters
  • identifiers ( Sequence [ Identifier ] ) – A list of identifiers to uniquely identify records in FeatureStore.

  • expiration_time_response ( str ) – the field of expiration time response to toggle returning of expiresAt.

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    search ( resource , filters = None , operator = None , sort_by = None , sort_order = None , next_token = None , max_results = None )

    Search for FeatureGroups or FeatureMetadata satisfying given filters.

    Parameters
  • resource ( ResourceEnum ) – The name of the Amazon SageMaker resource to search for. Valid values are FeatureGroup or FeatureMetadata .

  • filters ( Sequence [ Filter ] ) – A list of filter objects (Default: None).

  • operator ( SearchOperatorEnum ) – A Boolean operator used to evaluate the filters. Valid values are And or Or . The default is And (Default: None).

  • sort_by ( str ) – The name of the resource property used to sort the SearchResults . The default is LastModifiedTime .

  • sort_order ( SortOrderEnum ) – How SearchResults are ordered. Valid values are Ascending or Descending . The default is Descending .

  • next_token ( str ) – If more than MaxResults resources match the specified filters, the response includes a NextToken . The NextToken can be passed to the next SearchRequest to continue retrieving results (Default: None).

  • max_results ( int ) – The maximum number of results to return (Default: None).

  • Returns

    Response dict from service.

    Return type

    Dict [ str , Any ]

    @ sagemaker.feature_store.feature_processor. feature_processor ( inputs , output , target_stores = None , parameters = None , enable_ingestion = True , spark_config = None )

    Decorator to facilitate feature engineering for Feature Groups.

    If the decorated function is executed without arguments then the decorated function’s arguments are automatically loaded from the input data sources. Outputs are ingested to the output Feature Group. If arguments are provided to this function, then arguments are not automatically loaded (for testing).

    Decorated functions must conform to the expected signature. Parameters: one parameter of type pyspark.sql.DataFrame for each DataSource in ‘inputs’; followed by the optional parameters with names and types in [params: Dict[str, Any], spark: SparkSession]. Outputs: a single return value of type pyspark.sql.DataFrame. The function can have any name.

    Example:

    @feature_processor(
        inputs=[FeatureGroupDataSource("input-fg"), CSVDataSource("s3://bucket/prefix)],
        output='arn:aws:sagemaker:us-west-2:123456789012:feature-group/output-fg'
    def transform(
        input_feature_group: DataFrame, input_csv: DataFrame, params: Dict[str, Any],
        spark: SparkSession
    ) -> DataFrame:
        return ...
    

    More concisely:

    @feature_processor(
        inputs=[FeatureGroupDataSource("input-fg"), CSVDataSource("s3://bucket/prefix)],
        output='arn:aws:sagemaker:us-west-2:123456789012:feature-group/output-fg'
    def transform(input_feature_group, input_csv):
        return ...
    
    Parameters
  • inputs (Sequence[Union[FeatureGroupDataSource, CSVDataSource, ParquetDataSource, BaseDataSource]]) – A list of data sources.

  • output (str) – A Feature Group ARN to write results of this function to.

  • target_stores (Optional[list[str]], optional) – A list containing at least one of ‘OnlineStore’ or ‘OfflineStore’. If unspecified, data will be ingested to the enabled stores of the output feature group. Defaults to None.

  • parameters (Optional[Dict[str, Union[str, Dict]]], optional) – Parameters to be provided to the decorated function, available as the ‘params’ argument. Useful for parameterized functions. The params argument also contains the set of system provided parameters under the key ‘system’. E.g. ‘scheduled_time’: a timestamp representing the time that the execution was scheduled to execute at, if triggered by a Scheduler, otherwise, the current time.

  • enable_ingestion (bool, optional) – A boolean indicating whether the decorated function’s return value is ingested to the ‘output’ Feature Group. This flag is useful during the development phase to ensure that data is not used until the function is ready. It also useful for users that want to manage their own data ingestion. Defaults to True.

  • spark_config (Dict[str, str]) – A dict contains the key-value paris for Spark configurations.

  • Raises

    IngestionError – If any rows are not ingested successfully then a sample of the records, with failure reasons, is logged.

    Returns

    The decorated function.

    Return type

    Callable

    class sagemaker.feature_store.feature_processor.FeatureGroupDataSource(name, input_start_offset=None, input_end_offset=None)

    Bases: object

    A Feature Group data source definition for a FeatureProcessor.

    Parameters
  • name (str) –

  • input_start_offset (Optional[str]) –

  • input_end_offset (Optional[str]) –

  • input_start_offset

    A duration specified as a string in the format ‘<no> <unit>’ where ‘no’ is a number and ‘unit’ is a unit of time in [‘hours’, ‘days’, ‘weeks’, ‘months’, ‘years’] (plural and singular forms). Inputs contain data with event times no earlier than input_start_offset in the past. Offsets are relative to the function execution time. If the function is executed by a Schedule, then the offset is relative to the scheduled start time. Defaults to None.

    Optional[str], optional

    input_end_offset

    The ‘end’ (as opposed to start) counterpart for the ‘input_start_offset’. Inputs will contain records with event times no later than ‘input_end_offset’ in the past. Defaults to None.

    Optional[str], optional

    class sagemaker.feature_store.feature_processor.CSVDataSource(s3_uri, csv_header=True, csv_infer_schema=False)

    Bases: object

    An CSV data source definition for a FeatureProcessor.

    Parameters
  • s3_uri (str) –

  • csv_header (bool) –

  • csv_infer_schema (bool) –

  • csv_header

    Whether to read the first line of the CSV file as column names. This option is only valid when file_format is set to csv. By default the value of this option is true, and all column types are assumed to be a string.

    infer_schema

    Whether to infer the schema of the CSV data source. This option is only valid when file_format is set to csv. If set to true, two passes of the data is required to load and infer the schema.

    class sagemaker.feature_store.feature_processor.ParquetDataSource(s3_uri)

    Bases: object

    An parquet data source definition for a FeatureProcessor.

    Parameters

    s3_uri (str) –

    class sagemaker.feature_store.feature_processor.PySparkDataSource

    Bases: BaseDataSource[DataFrame], ABC

    Abstract base class for feature processor data sources.

    Provides a skeleton for customization requiring the overriding of the method to read data from data source and return the Spark DataFrame.

    Method generated by attrs for class PySparkDataSource.

    abstract read_data(spark, params=None)

    Read data from data source and convert the data to Spark DataFrame.

    Parameters
  • spark (SparkSession) – The Spark session to read the data.

  • params (Optional[Dict[str, Union[str, Dict]]]) – Parameters provided to the feature_processor decorator.

  • Returns

    The Spark DataFrame as an abstraction on the data source.

    Return type

    DataFrame

    feature_processor.to_pipeline(step, role=None, transformation_code=None, max_retries=None, tags=None, sagemaker_session=None)

    Creates a sagemaker pipeline that takes in a callable as a training step.

    To configure training step used in sagemaker pipeline, input argument step needs to be wrapped by remote decorator in module sagemaker.remote_function. If not wrapped by remote decorator, default configurations in sagemaker.remote_function.job._JobSettings will be used to create training step.

    Parameters
  • pipeline_name (str) – The name of the pipeline.

  • step (Callable) – A user provided function wrapped by feature_processor and optionally wrapped by remote_decorator.

  • role (Optional[str]) – The Amazon Resource Name (ARN) of the role used by the pipeline to access and create resources. If not specified, it will default to the credentials provided by the AWS configuration chain.

  • transformation_code (Optional[str]) – The data source for a reference to the transformation code for Lineage tracking. This code is not used for actual transformation.

  • max_retries (Optional[int]) – The number of times to retry sagemaker pipeline step. If not specified, sagemaker pipline step will not retry.

  • tags (List[Tuple[str, str]) – A list of tags attached to the pipeline and all corresponding lineage resources that support tags. If not specified, no custom tags will be attached.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Returns

    SageMaker Pipeline ARN.

    Return type
    feature_processor.schedule(schedule_expression, role_arn=None, state='ENABLED', start_date=None, sagemaker_session=None)

    Creates an EventBridge Schedule that schedules executions of a sagemaker pipeline.

    The pipeline created will also have a pipeline parameter scheduled-time indicating when the pipeline is scheduled to run.

    Parameters
  • pipeline_name (str) – The SageMaker Pipeline name that will be scheduled.

  • schedule_expression (str) – The expression that defines when the schedule runs. It supports at expression, rate expression and cron expression. See the CreateSchedule API for more details.

  • state (str) – Specifies whether the schedule is enabled or disabled. Valid values are ENABLED and DISABLED. See the State request parameter for more details. If not specified, it will default to ENABLED.

  • start_date (Optional[datetime]) – The date, in UTC, after which the schedule can begin invoking its target. Depending on the schedule’s recurrence expression, invocations might occur on, or after, the StartDate you specify.

  • role_arn (Optional[str]) – The Amazon Resource Name (ARN) of the IAM role that EventBridge Scheduler will assume for this target when the schedule is invoked.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Returns

    The EventBridge Schedule ARN.

    Return type
    feature_processor.execute(execution_time=None, sagemaker_session=None)

    Starts an execution of a SageMaker Pipeline created by feature_processor

    Parameters
  • pipeline_name (str) – The SageMaker Pipeline name that will be executed.

  • execution_time (datetime) – The date, in UTC, will be used as a sagemaker pipeline parameter indicating the time which at which the execution is scheduled to execute. If not specified, it will default to the current timestamp.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Returns

    The pipeline execution ARN.

    Return type
    feature_processor.delete_schedule(sagemaker_session=None)

    Delete EventBridge Schedule corresponding to a SageMaker Pipeline if there is one.

    Parameters
  • pipeline_name (str) – The name of the SageMaker Pipeline that needs to be deleted

  • sagemaker_session (Optional[Session]) – (Optional[Session], optional): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Return type
    feature_processor.describe(sagemaker_session=None)

    Describe feature processor and other related resources.

    This API will include details related to the feature processor including SageMaker Pipeline and EventBridge Schedule.

    Parameters
  • pipeline_name (str) – Name of the pipeline.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Returns

    Return information for resources related to feature processor.

    Return type

    Dict[str, Union[int, str]]

    feature_processor.list_pipelines()

    Lists all SageMaker Pipelines created by Feature Processor SDK.

    Parameters

    sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

    Returns
    Return list of SageMaker Pipeline metadata created for

    feature_processor.

    feature_processor.put_trigger(target_pipeline, target_pipeline_parameters=None, state='ENABLED', event_pattern=None, role_arn=None, sagemaker_session=None)

    Creates an event based trigger that triggers executions of a sagemaker pipeline.

    Parameters
  • source_pipeline_events (List[FeatureProcessorPipelineEvents]) – The list of FeatureProcessorPipelineEvents that will trigger the target_pipeline.

  • target_pipeline (str) – The name of the SageMaker Pipeline that will be triggered.

  • target_pipeline_parameters (Optional[Dict[str, str]]) – The list of parameters to start execution of a pipeline.

  • state (Optional[str]) – Indicates whether the rule is enabled or disabled. If not specified, it will default to ENABLED.

  • event_pattern (Optional[str]) – The EventBridge EventPattern that triggers the target_pipeline. If specified, will override source_pipeline_events. For more information, see https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-event-patterns.html in the Amazon EventBridge User Guide.

  • role_arn (Optional[str]) – The Amazon Resource Name (ARN) of the IAM role that EventBridge Scheduler will assume for this target when the schedule is invoked.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Returns

    The EventBridge Rule ARN.

    Return type
    feature_processor.enable_trigger(sagemaker_session=None)

    Enable the EventBridge Rule that is associated with the pipeline.

    Parameters
  • pipeline_name (str) – The SageMaker Pipeline name that will be executed.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Return type
    feature_processor.disable_trigger(sagemaker_session=None)

    Disable the EventBridge Rule that is associated with the pipeline.

    Parameters
  • pipeline_name (str) – The SageMaker Pipeline name that will be executed.

  • sagemaker_session (Optional[Session]) – Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Return type
    feature_processor.delete_trigger(sagemaker_session=None)

    Delete EventBridge Rule corresponding to a SageMaker Pipeline if there is one.

    Parameters
  • pipeline_name (str) – The name of the SageMaker Pipeline that needs to be deleted

  • sagemaker_session (Optional[Session]) – (Optional[Session], optional): Session object which manages interactions with Amazon SageMaker APIs and any other AWS services needed. If not specified, the function creates one using the default AWS configuration chain.

  • Return type