![]() |
眉毛粗的跑步机 · 播出5集就被叫停,30年前的《封神榜》,代表 ...· 3 月前 · |
![]() |
叛逆的橡皮擦 · 2022中国消化内镜学年会(CCDE2022 ...· 4 月前 · |
![]() |
威武的火车 · 优化 Spring ...· 5 月前 · |
![]() |
坚强的咖啡豆 · pandas.Series.str.repl ...· 5 月前 · |
![]() |
酷酷的生姜 · 祁门酒店,祁门酒店预订查询,祁门宾馆住宿【携 ...· 7 月前 · |
reference: https://www.tau.ac.il/~mansour/course_games/scribe/lecture4.pdf
双人零和博弈是指两个参与者的支付在任意情况下和为0的博弈。假设行玩家的策略为x,列玩家的策略为y,那么行玩家的目标应为max_x(xRy),而列玩家的目标为max_y (x-Ry),即min_y(xRy),因此,零和博弈的本质是优化的minmax问题
双人零和博弈的纳什均衡有下列若干性质:
可交换性 :假设博弈 \pi(\gamma_1,\gamma_2)=\pi(\sigma_1,\sigma_2)=\pi(\gamma_1,\sigma_2)=\pi(\sigma_1,\gamma_2) π ( γ 1 , γ 2 ) = π ( σ 1 , σ 2 ) = π ( γ 1 , σ 2 ) = π ( σ 1 , γ 2 )
证明
:根据NE的性质:
\begin{array}{lcl} \forall 1 \leq j \leq n, & \sum_{i=1}^{m} x_{i} a_{i j}-V & \geq 0 \\ \forall 1 \leq i \leq m & x_{i} & \geq 0 \\ & \sum_{i=1}^{m} x_{i} & =1 \\ & \text { Maximize target function } & V \end{array}
∀1
≤
j
≤
n
,
∀1
≤
i
≤
m
∑
i
=
1
m
x
i
a
ij
−
V
x
i
∑
i
=
1
m
x
i
Maximize target function
≥
0
≥
0
=
1
V
由上,其对偶算法计算了列玩家的策略:
\begin{array}{lcl} \forall 1 \leq j \leq m, & \sum_{i=1}^{n} y_{i} a_{j i}-V & \leq 0 \\ \forall 1 \leq i \leq n & y_{i} & \geq 0 \\ & \sum_{i=1}^n y_{i} & =1 \\ & \text { Minimize target function } & V \end{array}
∀1
≤
j
≤
m
,
∀1
≤
i
≤
n
∑
i
=
1
n
y
i
a
ji
−
V
y
i
∑
i
=
1
n
y
i
Minimize target function
≤
0
≥
0
=
1
V
显然,由于线性规划是多项式时间的算法,因此计算零和博弈的NE也是多项式时间的。
![]() |
酷酷的生姜 · 祁门酒店,祁门酒店预订查询,祁门宾馆住宿【携程酒店】 7 月前 |