添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
Suppose I already have pure PyTorch code defining datset + dataloader. I want to use fastai v2 learner to train the model. See Jeremy’s blog https://www.fast.ai/2020/02/13/fastai-A-Layered-API-for-Deep-Learning/ (Section " Incrementally adapting PyTorch code")

data = DataLoaders(train_loader, test_loader).cuda()
learn = Learner(data, Net(), loss_func=F.nll_loss, opt_func=Adam, metrics=accuracy)
learn.fit_one_cycle(epochs, lr)

However, I encountered error --> DataLoader object has no attribute ‘to’
dl error1033×838 49.2 KB

Hi SidNg,

The issue is that both torch and fastai2 define class DataLoader, with the fastai version having extra methods. You need to create your loaders using the fastai2 version of DataLoader. Then
dls = DataLoaders(trainDL, validDL).to(device)
will work.

HTH, Malcolm

I have 2 torch.utils.data.DataLoader: train_dl and valid_dl

If I do

from fastai.learner       import Learner
from fastai.data.core     import DataLoaders
from fastai.callback.data import CudaCallback
learn = Learner(dls = DataLoaders(train_dl, valid_dl),
                # model, loss, metrics, ...
                cbs = [CudaCallback] # And other callbacks

I get: AttributeError: 'DataLoader' object has no attribute 'device'

And if I change to some of this inside the Learner:

  • dls = DataLoaders(train_dl, valid_dl, device="cuda")
  • dls = DataLoaders(train_dl, valid_dl).cuda()
  • dls = DataLoaders(train_dl, valid_dl).to("cuda")
  • I get: AttributeError: 'DataLoader' object has no attribute 'to'

    References

    I follow the indications of:

  • Learner, Metrics, Callbacks – fastai
  • Redirect
  • Thanks in advance for the help :slight_smile:

    cbs = [CudaCallback] # and others
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-29-b60c6a88c37b> in <module>
    ----> 1 learn.fit(1, 1e-2) # learn.fit_one_cycle(1, 1e-2)
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in fit(self, n_epoch, lr, wd, cbs, reset_opt)
        210             self.opt.set_hypers(lr=self.lr if lr is None else lr)
        211             self.n_epoch = n_epoch
    --> 212             self._with_events(self._do_fit, 'fit', CancelFitException, self._end_cleanup)
        214     def _end_cleanup(self): self.dl,self.xb,self.yb,self.pred,self.loss = None,(None,),(None,),None,None
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _with_events(self, f, event_type, ex, final)
        159     def _with_events(self, f, event_type, ex, final=noop):
    --> 160         try: self(f'before_{event_type}');  f()
        161         except ex: self(f'after_cancel_{event_type}')
        162         self(f'after_{event_type}');  final()
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _do_fit(self)
        201         for epoch in range(self.n_epoch):
        202             self.epoch=epoch
    --> 203             self._with_events(self._do_epoch, 'epoch', CancelEpochException)
        205     def fit(self, n_epoch, lr=None, wd=None, cbs=None, reset_opt=False):
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _with_events(self, f, event_type, ex, final)
        159     def _with_events(self, f, event_type, ex, final=noop):
    --> 160         try: self(f'before_{event_type}');  f()
        161         except ex: self(f'after_cancel_{event_type}')
        162         self(f'after_{event_type}');  final()
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _do_epoch(self)
        196     def _do_epoch(self):
    --> 197         self._do_epoch_train()
        198         self._do_epoch_validate()
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _do_epoch_train(self)
        187     def _do_epoch_train(self):
        188         self.dl = self.dls.train
    --> 189         self._with_events(self.all_batches, 'train', CancelTrainException)
        191     def _do_epoch_validate(self, ds_idx=1, dl=None):
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in _with_events(self, f, event_type, ex, final)
        159     def _with_events(self, f, event_type, ex, final=noop):
    --> 160         try: self(f'before_{event_type}');  f()
        161         except ex: self(f'after_cancel_{event_type}')
        162         self(f'after_{event_type}');  final()
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in all_batches(self)
        164     def all_batches(self):
        165         self.n_iter = len(self.dl)
    --> 166         for o in enumerate(self.dl): self.one_batch(*o)
        168     def _do_one_batch(self):
    ~/.local/lib/python3.9/site-packages/fastai/learner.py in one_batch(self, i, b)
        181     def one_batch(self, i, b):
        182         self.iter = i
    --> 183         b_on_device = tuple( e.to(device=self.dls.device) for e in b if hasattr(e, "to")) if self.dls.device is not None else b
        184         self._split(b_on_device)
        185         self._with_events(self._do_one_batch, 'batch', CancelBatchException)
    ~/.local/lib/python3.9/site-packages/fastcore/basics.py in __getattr__(self, k)
        386         if self._component_attr_filter(k):
        387             attr = getattr(self,self._default,None)
    --> 388             if attr is not None: return getattr(attr,k)
        389         raise AttributeError(k)
        390     def __dir__(self): return custom_dir(self,self._dir())
    AttributeError: 'DataLoader' object has no attribute 'device'
    

    And this is my error at creating the Learner with on of these options for the dls:

  • dls = DataLoaders(train_dl, valid_dl, device="cuda")
  • dls = DataLoaders(train_dl, valid_dl).cuda()
  • dls = DataLoaders(train_dl, valid_dl).to("cuda")
  • ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-33-5e8af8ac536d> in <module>
    ----> 1 learn = Learner(dls       = DataLoaders(train_dl, valid_dl, device="cuda"),
          2                 model     = MyModel(),
          3                 loss_func = CrossEntropyLossFlat())
    ~/.local/lib/python3.9/site-packages/fastai/data/core.py in __init__(self, path, device, *loaders)
        142     def __init__(self, *loaders, path='.', device=None):
        143         self.loaders,self.path = list(loaders),Path(path)
    --> 144         if device is not None or hasattr(loaders[0],'to'): self.device = device
        146     def __getitem__(self, i): return self.loaders[i]
    ~/.local/lib/python3.9/site-packages/fastai/data/core.py in device(self, d)
        158     @device.setter
        159     def device(self, d):
    --> 160         for dl in self.loaders: dl.to(d)
        161         self._device = d
    AttributeError: 'DataLoader' object has no attribute 'to'
    

    Actually, this is an active bug. This used to work but something’s changed, let me go dig

    I can guarantee this will work with:

    !pip install fastai==2.2.5 fastcore==1.3.19
    

    cc @Pomo

    Edit: Here’s the breaking commit, will be opening an issue:

    github.com/fastai/fastai

    Introduced in https://github.com/fastai/fastai/commit/e4303fbb68652a7fe05f28877e

    muellerzr:

    Actually, this is an active bug. This used to work but something’s changed, let me go dig

    I can guarantee this will work with:

    !pip install fastai==2.2.5 fastcore==1.3.19

    Thanks, switching to fastai 2.2.5 meanwhile.

    I’ve submitted a PR which reduces what’s needed by you to train your model on the gpu with raw torch loaders, once this get’s merged it’ll be live on the master branch, so install fastai with:

    pip install git+https://github.com/fastai/fastai
    pip install git+https://github.com/fastai/fastcore
    

    This also will remove the necessary addition of the CudaCallback when training, and instead fastai will just move the tensors to the right device