100
Clinical Results associated with HUNK subfamily
Login to view more data
100
Translational Medicine associated with HUNK subfamily
Login to view more data
0
Patents (Medical) associated with HUNK subfamily
Login to view more data
41
Literatures (Medical) associated with HUNK subfamily
25 Jan 2024
·
Cell chemical biology
Identification and characterization of a potent and selective HUNK inhibitor for treatment of HER2+ breast cancer.
Article
Author:
Abt, Melissa
;
Yeh, Elizabeth S
;
Ramos-Solís, Nicole
;
Oblak, Adrian L
;
Dilday, Tinslee
;
Larocque, Elizabeth
;
Dayal, Neetu
;
Sintim, Herman O
Human epidermal growth factor receptor 2 (HER2)-targeted agents have proven to be effective, however, the development of resistance to these agents has become an obstacle in treating HER2+ breast cancer. Evidence implicates HUNK as an anti-cancer target for primary and resistant HER2+ breast cancers. In this study, a selective inhibitor of HUNK is characterized alongside a phosphorylation event in a downstream substrate of HUNK as a marker for HUNK activity in HER2+ breast cancer. Rubicon has been established as a substrate of HUNK that is phosphorylated at serine (S) 92. Findings indicate that HUNK-mediated phosphorylation of Rubicon at S92 promotes both autophagy and tumorigenesis in HER2/neu+ breast cancer. HUNK inhibition prevents Rubicon S92 phosphorylation in HER2/neu+ breast cancer models and inhibits tumorigenesis. This study characterizes a downstream phosphorylation event as a measure of HUNK activity and identifies a selective HUNK inhibitor that has meaningful efficacy toward HER2+ breast cancer.
01 Jan 2024
·
Science Bulletin
HUNK inhibits cargo uptake and lysosomal traffic in the caveolar pathway via the AGAP3/ARF6
Hypoxia is a common hallmark of cancer and plays a crucial role in promoting epithelial-mesenchymal transition (EMT). Hormonally Upregulated Neu-associated Kinase (HUNK) regulates EMT through its kinase activity. However, whether hypoxia is involved in HUNK-mediated EMT is incompletely understood. This study unveils an association between HUNK kinase activity and hypoxia in colorectal cancer (CRC). Importantly, hypoxia does not alter the expression levels of HUNK, but directly affects the phosphorylation levels of downstream proteins with indication of HUNK activity. Functionally, the upregulation of migration, invasion, and expression of EMT markers in CRC cells under hypoxic conditions can be attributed, in part, to the downregulation of HUNK-mediated phosphorylation of downstream proteins. These findings highlight the intricate relationship between HUNK, hypoxia and the molecular mechanisms of cancer EMT. Understanding these mechanisms may provide valuable insights into therapeutic targets for inhibiting cancer metastasis.
Accelerate Strategic R&D decision making with Synapse, PatSnap’s AI-powered Connected Innovation Intelligence Platform Built for Life Sciences Professionals.
Start your data trial now!
Synapse data is also accessible to external entities via APIs or data packages. Leverages most recent intelligence information, enabling fullest potential.