生物界的ChatGPT:ProGen——开启人工智能设计蛋白质的新时代
2022年11月30日,美国人工智能实验室OpenAI发布ChatGPT。ChatGPT问世即一举成名,引起全球热议。微软公司表示将把ChatGPT整合到搜索引擎Bing和网络浏览器中,并向ChatGPT的创建者Open AI投资100亿美元;此外ChatGPT成功面试谷歌编程;小说、剧作、漫画ChatGPT也信手拈来。短短两个多月,ChatGPT让人惊叹的表现不胜枚举,人工智能新时代的序幕由此拉开。
翌圣
ZymeEditor
TM
平台
的理性设计技术具备蛋白质建模、分子对接、分子动力学模拟等技术模块,并结合人工智能深度学习语言模型,对蛋白质进行精准改造,具有准确度高、耗时短、成本低等优势。翌圣ZymeEditor
TM
平台的超高通量定向进化技术,则可构建优质、超大突变文库,进行自动化、智能化的超高通量筛选,可快速、准确获得具备特定功能的有益突变体。翌圣ZymeEditor
TM
平台的人工智能技术将理性设计与定向进化湿实验产生的庞大的蛋白质实验数据作为机器学习的数据训练集,更加真实可靠,从而训练出更适合分子酶的语言模型。ZymeEditor
TM
平台目前已完成130余种高端分子酶的改造和进化,具备扎实的开发高端分子酶的技术基础。
[1]Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL Jr, Xiong C, Sun ZZ, Socher R, Fraser JS, Naik N. Large language models generate functional protein sequences across diverse families. Nat Biotechnol. 2023 Jan 26. doi: 10.1038/s41587-022-01618-2. Epub ahead of print. PMID: 36702895.
[2]Madani A, McCann B, Naik N, Keskar NS, Anand N, Eguchi RR, Huang PS, Socher R. ProGen: language modeling for protein generation. BioRxiv。2022 Mar 7. doi: https://doi.org/10.1101/2020.03.07.982272.
[3]Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15. PMID: 34265844; PMCID: PMC8371605.
[4]ChatGPT: Optimizing Language Models for Dialogue: https://openai.com/blog/chatgpt/
[5]Radford A, Narasimhan K,Salimans T, Sutskever I.Improving Language Understanding by Generative Pre-Training.
[6]Tools such as ChatGPT threaten transparent science; here are our ground rules for their use. Nature. 2023 Jan;613(7945):612. doi: 10.1038/d41586-023-00191-1. PMID: 36694020.
[7]Riesselman AJ, Ingraham JB, Marks DS. Deep generative models of genetic variation capture the effects of mutations. Nat Methods. 2018 Oct;15(10):816-822. doi: 10.1038/s41592-018-0138-4. Epub 2018 Sep 24. PMID: 30250057; PMCID: PMC6693876.
[8]University of California - San Francisco. "AI technology generates original proteins from scratch: Natural language model jumpstarts protein design with creation of active enzymes." ScienceDaily. ScienceDaily, 26 January 2023..