添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
DataFrameGroupBy. count ( split_every = None , split_out = 1 , shuffle_method = None )

Compute count of group, excluding missing values.

This docstring was copied from pandas.core.groupby.groupby.GroupBy.count.

Some inconsistencies with the Dask version may exist.

Returns
Series or DataFrame

Count of values within each group.

For SeriesGroupBy:

>>> lst = ['a', 'a', 'b']  
>>> ser = pd.Series([1, 2, np.nan], index=lst)  
a    1.0
a    2.0
b    NaN
dtype: float64
>>> ser.groupby(level=0).count()  
a    2
b    0
dtype: int64

For DataFrameGroupBy:

>>> data = [[1, np.nan, 3], [1, np.nan, 6], [7, 8, 9]]  
>>> df = pd.DataFrame(data, columns=["a", "b", "c"],  
...                   index=["cow", "horse", "bull"])
        a         b     c
cow     1       NaN     3
horse   1       NaN     6
bull    7       8.0     9
>>> df.groupby("a").count()  
    b   c
1   0   2
7   1   1

For Resampler:

>>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex(  
...                 ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
2023-01-01    1
2023-01-15    2
2023-02-01    3
2023-02-15    4
dtype: int64
>>> ser.resample('MS').count()  
2023-01-01    2
2023-02-01    2
Freq: MS, dtype: int64