添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接

scVI - Single cell Variational Inference

scVI is a package for end-to-end analysis of single-cell omics data. The package is composed of several deep generative models for omics data analysis, namely:

  • scVI for analysis of single-cell RNA-seq data, as well as its improved differential expression framework

  • scANVI for cell annotation of scRNA-seq data using semi-labeled examples

  • totalVI for analysis of CITE-seq data

  • gimVI for imputation of missing genes in spatial transcriptomics from scRNA-seq data

  • AutoZI for assessing gene-specific levels of zero-inflation in scRNA-seq data

  • LDVAE for an interpretable linear factor model version of scVI

  • Tutorials and API reference are available in the documentation . Please use the issues here to discuss usage, or submit bug reports. If you’d like to contribute, please check out our contributing guide . If you find a model useful for your research, please consider citing the corresponding publication (linked above).

    Package transition

    scvi is transitioning to scvi-tools . If you’re looking for scvi source code, please use the branch tags. scvi is still available via pypi and bioconda, but there will be no future releases past 0.6.8 . An alpha-release of scvi-tools will be available shortly.

    History

    0.6.8 (2020-9-16)

  • scvi is now deprecated, please uninstall and install scvi-tools (available shortly)

  • 0.6.7 (2020-8-05)

  • downgrade anndata>=0.7 and scanpy>=1.4.6 @galen

  • make loompy optional, raise sckmisc import error @adam

  • fix PBMCDataset download bug @galen

  • fix AnnDatasetFromAnnData _X in adata.obs bug @galen

  • 0.6.6 (2020-7-08)

  • add tqdm to within cluster DE genes @adam

  • restore tqdm to use simple bar instead of ipywidget @adam

  • move to numpydoc for doctstrings @adam

  • update issues templates @adam

  • Poisson variable gene selection @valentine-svensson

  • BrainSmallDataset set defualt save_path_10X @gokcen-eraslan

  • train_size must be float between 0.0 and 1.0 @galen

  • bump dependency versions @galen

  • remove reproducibility notebook @galen

  • fix scanVI dataloading @pierre

  • 0.6.5 (2020-5-10)

  • updates to totalVI posterior functions and notebooks @adam

  • update seurat v3 HVG selection now using skmisc loess @adam

  • 0.6.4 (2020-4-14)

  • add back Python 3.6 support @adam

  • get_sample_scale() allows gene selection @valentine-svensson

  • bug fix to the dataset to anndata method with how cell measurements are stored @adam

  • fix requirements @adam

  • 0.6.3 (2020-4-01)

  • bug in version for Louvian in setup.py @adam

  • 0.6.2 (2020-4-01)

  • update highly variable gene selection to handle sparse matrices @adam

  • update DE docstrings @pierre

  • improve posterior save load to also handle subclasses @pierre

  • Create NB and ZINB distributions with torch and refactor code accordingly @pierre

  • typos in autozivae @achille

  • bug in csc sparse matrices in anndata data loader @adam

  • 0.6.1 (2020-3-13)

  • handles gene and cell attributes with the same name @han-yuan

  • fixes anndata overwriting when loading @adam , @pierre

  • formatting in basic tutorial @adam

  • 0.6.0 (2020-2-28)

  • updates on TotalVI and LDVAE @adam

  • fix documentation, compatibility and diverse bugs @adam , @pierre @romain

  • fix for external module on scanpy @galen

  • 0.5.0 (2019-10-17)

  • do not automatically upper case genes @adam

  • AutoZI @oscar

  • Made the intro tutorial more user friendly @adam

  • Tests for LDVAE notebook @adam

  • black codebase @achille @gabriel @adam

  • fix compatibility issues with sklearn and numba @romain

  • fix Anndata @francesco-brundu

  • docstring, totalVI, totalVI notebook and CITE-seq data @adam

  • fix type @eduardo-beltrame

  • fixing installation guide @jeff

  • improved error message for dispersion @stephen-flemming

  • 0.4.1 (2019-08-03)

  • docstring @achille

  • differential expression @oscar @pierre

  • 0.4.0 (2019-07-25)

  • gimVI @achille

  • synthetic correlated datasets, fixed bug in marginal log likelihood @oscar

  • autotune, dataset enhancements @gabriel

  • documentation @jeff

  • more consistent posterior API, docstring, validation set @adam

  • fix anndataset @michael-raevsky

  • linearly decoded VAE @valentine-svensson

  • support for scanpy, fixed bugs, dataset enhancements @achille

  • fix filtering bug, synthetic correlated datasets, docstring, differential expression @pierre

  • better docstring @jamie-morton

  • classifier based on library size for doublet detection @david-kelley

  • 0.3.0 (2019-05-03)

  • corrected notebook @jules

  • added UMAP and updated harmonization code @chenling @romain

  • support for batch indices in csvdataset @primoz-godec

  • speeding up likelihood computations @william-yang

  • better anndata interop @casey-greene

  • early stopping based on classifier accuracy @david-kelley

  • 0.2.4 (2018-12-20)

  • updated to torch v1 @jules

  • added stress tests for harmonization @chenling

  • fixed autograd breaking @romain

  • make removal of empty cells more efficient @john-reid

  • switch to os.path.join @casey-greene

  • 0.2.2 (2018-11-08)

  • added baselines and datasets for sMFISH imputation @jules

  • added harmonization content @chenling

  • fixing bugs on DE @romain

  • 0.2.0 (2018-09-04)

  • annotation notebook @eddie

  • Memory footprint management @jeff

  • updated early stopping @max

  • docstring @james-webber

  • 0.1.6 (2018-08-08)

  • MMD and adversarial inference wrapper @eddie

  • Documentation @jeff

  • smFISH data imputation @max

  • 0.1.5 (2018-07-24)

  • Dataset additions @eddie

  • Documentation @yining

  • updated early stopping @max

  • 0.1.3 (2018-06-22)

  • Notebook enhancement @yining

  • Semi-supervision @eddie

  • 0.1.2 (2018-06-13)

  • First release on PyPi

  • Skeleton code & dependencies @jeff

  • Unit tests @max

  • PyTorch implementation of scVI @eddie @max

  • Dataset preprocessing @eddie @max @yining

  • 0.1.0 (2017-09-05)

  • First scVI TensorFlow version @romain

  • Download files

    Download the file for your platform. If you're not sure which to choose, learn more about installing packages .

    Source Distribution "PyPI", "Python Package Index", and the blocks logos are registered trademarks of the Python Software Foundation .
    © 2024 Python Software Foundation
    Site map