添加链接
link管理
链接快照平台
  • 输入网页链接,自动生成快照
  • 标签化管理网页链接
凡用到文件读写,输入输出,就得和编码、Unicode 打交道。这系列实验来测试一下 C++ STL 的 IO流 对 ANSI 编码、Unicode 编码的支持特性,看能否找到一个自动识别编码,自动转码的解决方案。从基础开始,一步一步来:
平台 Win32 XP sp3 + VS2008. (+ Boost 1.36.0)
实验 01:
#include <string>
#include <iostream>
#include <locale>
using namespace std;
locale prevloc;
locale loc( "chs" );
string str1( "string class" );
string str2( "汉字与字符" );
wstring wstr1( L"wstring class" ); //去掉L前缀则编译错误
wstring wstr2( L"汉字与字符" );
prevloc = cout.imbue(locale( "" ));
cout<< "Default Locale: " <<prevloc.name()<<endl;
cout<< "System Locale: " <<locale( "" ).name()<<endl;
cout<< "C风格字符串\n" << L"w-string\n "<<str1<< ‘\n’ <<str2<< ‘\n’ <<endl;
prevloc = wcout.imbue(loc); //若去掉此句,则wstr2无法正常输出
wcout<< "Default Locale: " <<prevloc.name().c_str()<<endl; //若不加 .c_str() 则编译错误
wcout<< "chs Locale Name: " <<loc.name().c_str()<<endl;
wcout<< "C-string\n" << "C风格字符串\n" << L"宽字符串\n" <<wstr1<< ‘\n’ <<wstr2<< ‘\n’ <<endl;
1.cout 与 string 配合使用,wcout 与 wstring 配合使用,交错则编译错误(类型问题)
2.wstring 初始化时需用 L"xxx" 的宽字符形式,同样 string 初始化时不能加 L 前缀
3.默认locale ("C")下 cout 可以正常输出 C风格字符串与std::string类型,包括汉字也能正常显示
但对 L"xxx" 宽字符串无能为力
默认locale ("C")下 wcout 不能输出中文,包括C风格字符串、宽字符串与std::wstring
设定系统 locale ("chs")后,正常输出宽字符串与std::wstring,但 C风格字符串 中的汉字无法显示
总之,string cout "C-style 字符串" 自成体系
wstring wcout L"宽字符串" 自成体系,但 wcout 要选择 locale 后才能正常输出中文。
实验 02:
cout.imbue(locale( "" ));
wcout.imbue(locale( "" ));
string  str3 ( "abc汉字" );
wstring wstr3( L"abc汉字" );
cout<< "str1 length: " <<str1.length()<< ‘\n’ ; // 12
cout<< "str2 length: " <<str2.length()<< ‘\n’ ; // 10
cout<< "str3 length: " <<str3.length()<< ‘\n’ ; // 7
cout<<str2[0]<< ‘ ‘ <<str2[1]<< ‘\n’ ; // 输出:?
cout<<endl;
wcout<< L"wstr1 length: " <<wstr1.length()<< ‘\n’ ; // 13
wcout<< L"wstr2 length: " <<wstr2.length()<< ‘\n’ ; // 5
wcout<< L"wstr3 length: " <<wstr3.length()<< ‘\n’ ; // 5
wcout<<wstr2[0]<< ‘ ‘ <<wstr2[1]<< ‘\n’ ; // 输出:汉 字
4.std::string 内部以 char 类型储存字符,当有汉字时以双字节存储,此时 length() 给出
字符串所占字节数而不是字符数
std::wstring 内部以 wchar_t 类型存储字符,字母汉字统一都是双字节,此时 length()
给出是正确的字符数。
5.当std::string中有汉字存在时,通过下标访问不能得到正确的字符。这是显而易见的,
一方面字符宽度不统一无法随机访问,另一方面 std::string[] 返回 char 类型。std::wstring
不存在此问题。
实验 03:
// test.txt 为 ANSI 编码(GB2312),内容为以上 str1 ~ str3 的3行。
#include <fstream>
string str;
wstring wstr;
ifstream fin( "test.txt" );
//fin.imbue(locale(""));
while (fin>>str)
cout<<str<< ‘\n’ ;
fin.close();
wifstream wfin( "test.txt" );
//wfin.imbue(locale(""));
//wfin.imbue(locale(".936"));
while (wfin>>wstr)
wcout<<wstr<< ‘\n’ ;
wfin.close();
6.std::ifstream 读取 ANSI 编码正常,std::wifstream 读取 ANSI 编码错误…默认 locale("C") 不能识别中文字符
std::wifstream 设置 imbue(locale("")) 或 locale(".936") 后正常读取。936 为 GB2312 的代码页。
实验 04:
test.txt 为 Shift-JIS 编码,内容为
うみねこのなく頃に
程序代码同实验3
ifstream 输出为
偆傒偹偙偺側偔崰偵
wifstream 设定 imbue(locale("")) 后输出相同
7.显而易见的,其他地区的编码无法正确识别。这也是很多日本游戏和文本文件运行
或读取时产生乱码的原因。
实验 05:
test.txt 为 Shift-JIS 编码,内容同上
ifstream 与 wifstream 都添加 imbue(locale("jpn")) 或 locale(".932")
932 为 Shift-JIS 的代码页
输出为:
偆傒偹偙偺側偔崰偵
うみねこのなく頃に
8.这里可以看出一个显著性差异。wifstream 在读取时按照 Shift-JIS 编码将其转换为
Unicode 储存,在 wcout 输出时又按照 ANSI (GB2312) 转换,其结果是 —— 正确显示
了其他地区编码的字符。而 ifstream 与 cout 则缺少那两步转换,结果与上例相同
以后的实验将不再考虑 ifstream 而只实验 wifstream。
实验 06:
test.txt 存为 UTF-16 编码(Win32 默认的 little endian),内容同上。
wifstream 设定为 imbue(locale(".1200"))
1200 为 UTF-16 的 code page
结果,运行出错…发现是 imbue(locale(".1200")); 这句的问题
试着将 ".1200" 改为 ".936" 则运行正常,输出乱码。(936是 GB2312 的代码页)
翻 MSDN 时在 Code Page 那页1200 UTF-16 后面发现一行小字:
"available only to managed applications"…郁闷
看来用 locale 转Unicode的想法到此结束了?记得 STL 书中貌似说过,locale 的名
字在各平台上是不统一的,因为关系到各平台的支持问题。这样的话,要么自己写
代码,要么就只好用 API 显式转换了:MultiByteToWideChar
另外,在 setlocale 函数说明中也写到,UTF-8 和 UTF-7 等每字符有可能大于2字节
的编码不被支持,所以 UTF-8 也只能用 MultiByteToWideChar 转咯…
目前大概只能得出结论 C++ STL locale 在 Win32 平台上支持不完善吧
实验 07: 用 API 重写读文件部分代码
#include <windows.h>
HANDLE hFile;
if (INVALID_HANDLE_VALUE != (hFile = CreateFileW( L"test.txt",
GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, NULL))){

int iFileLength, iUniTest, i;
iFileLength = GetFileSize(hFile,NULL);
char *pBuffer, *pText;
pBuffer = new char[iFileLength+2];
DWORD dwBytesRead;
ReadFile(hFile,pBuffer,iFileLength,&dwBytesRead,NULL);
CloseHandle(hFile);
pBuffer[iFileLength] = ;
pBuffer[iFileLength + 1] = ;
iUniTest = IS_TEXT_UNICODE_SIGNATURE | IS_TEXT_UNICODE_REVERSE_SIGNATURE;
if (IsTextUnicode(pBuffer,iFileLength,&iUniTest)){
pText = pBuffer + 2;
iFileLength -= 2;
if (iUniTest & IS_TEXT_UNICODE_REVERSE_SIGNATURE){
for (i = 0;i < iFileLength; i+=2)
swap(pText[i],pText[i+1]);
}
wstr = ( wchar_t *)(pBuffer+2);
}
delete [] pBuffer;
wcout<<wstr<< ‘\n’ ;
}
输出正确。以上程序段自动识别 Unicode 编码文件开头的 0xFFFE 标记判断是 Little Endian 还是
Big Endian 并做相应转换。但是代码量较大,且与 C++ 的 IO流 很不搭调…
9.可以看到,只是把输入内容去掉UTF-16开头的0xFFFE,直接把内存指针改为
wchar_t* 后 std::wstring 即可正确识别,说明程序中的宽字符存储格式实际上用的就是
UTF-16 little endian
实验 08:
不死心又去翻了 boost 库,发现 codecvt_null 这个好东西,看下实现是把文件存储内容
按照 wchar_t 为单位直接读入内存不做任何转换。这其实不正好是 UTF-16 需要做的么
以下把 test.txt 存为 UTF-16 little endian 再次实验
#include <boost/archive/codecvt_null.hpp>
wifstream wfin( L"test.txt" );
locale utf16(loc, new boost::archive::codecvt_null< wchar_t >);
wfin.imbue(utf16);
while (wfin>>wstr){
wcout<<wstr<<endl;
}
wfin.close();
输出正确。
10. 看来可以把 codecvt_null 作为 UTF-16 的 codecvt_facet 读入 locale
来使用,避免使用类似上面 API 那么多代码。
实验 09:
将 test.txt 存为 UTF-16 Big Endian ,内容不变。程序不变
无法输出任何内容。
11. wcout 不认识 big endian 的 wchar_t …
看来想读取 UTF-16 Big Endian,仅靠 codecvt_null 还不够。稍微翻了一下
《C++ 输入输出流与本地化》这本书,现在可以考虑写一个自己的 codecvt_facet
了。有了 codecvt_null 的代码,稍作改动即可用于 UTF-16 big endian。虽说有了
现在的知识自己写个 utf-16 的codecvt_facet 也可以,但效率大概比不上 boost 里的。
代码准备:用类似的方法写出了自己的 codecvt_utf16 和 codecvt_utf16_reverse 两个
codecvt_facet…然后继续实验。自己写的内容放入咱自己的头文件吧:codecvt_utf.h,
内容加入自己的 namespace : tvt
实验 10: 用 codecvt_utf.h 代替 codecvt_null.hpp。用 codecvt_utf16 和
codecvt_utf16_reverse 实现 little endian 与 big endian 的输入。
wifstream wfin( L"test.txt" );
locale utf16(loc, new tvt::codecvt_utf16< wchar_t >);
wfin.imbue(utf16);
while (wfin>>wstr){
wcout<<wstr<<endl;
}
wfin.close();
///////////////////////////////////////
wifstream wfin( L"test.txt" );
locale utf16(loc, new tvt::codecvt_utf16_reverse< wchar_t >);
wfin.imbue(utf16);
while (wfin>>wstr){
wcout<<wstr<<endl;
}
wfin.close();
第一段程序读取 UTF-16 little endian 编码的 text.txt 正确输出
第二段程序读取 UTF-16 big endian 编码的 text.txt 正确输出
UTF-16 的转码顺利完成。下面考虑 UTF-8 ,写法类似。在 boost 库中继续寻找,发现
这个东东 boost/detail/utf8_codecvt_facet.hpp 。看下说明,不支持直接使用此文件,这文件
是专门提供其他 boost 组件使用的。仅 include 它的话编译出问题。再寻找到同名的 cpp 文件
后即可看到 do_in do_out 这两个转码关键的虚函数。有了上面 UTF-16 的基础,我们类似可写
出 UTF-8 的转码 codecvt_facet。我给他起名为 codecvt_utf8, 依然加入 codecvt_utf.h 文件。
现在此文件有一两百行了。经试验可正确输入 UTF-8 编码。
对应编码有了处理方法后,下一个问题是编码识别。
实验 11:
wchar_t wc;
wchar_t buf[2];
wifstream wfin( L"text.txt" );
wfin.read(&wc,1);
wfin.read(&buf[0],2);
将 wc 和 buf 的内容按2进制或16进制输出。
12. wistream.read(buffer,count) 操作每次读入 count 个字节,但将每个字节存入一个
wchar_t 类型的 buffer[i] 中。其实 buffer 中每个 wchar_t 的高位都字节是 0 …
实验 12:
加入判断条件,在 wfin 中自动加入合适的 utf16 facet,使得自动识别并读取
little endian 和 big endian 编码的文件:
wchar_t buf[2];
wifstream wfin( L"test.txt" );
wfin.read(buf,2);
if (buf[0] == wchar_t (0xFF) && buf[1] == wchar_t (0xFE)){
cout<< "little endian" <<endl;
wfin.imbue(locale(loc, new tvt::codecvt_utf16< wchar_t >));
}
else if (buf[0] == wchar_t (0xFE) && buf[1] == wchar_t (0xFF)){
cout<< "big endian" <<endl;
wfin.imbue(locale(loc, new tvt::codecvt_utf16_reverse< wchar_t >));
}
while (wfin>>wstr){
wcout<<wstr<<endl;
}
对于两种编码的 text.txt 都实现了自动识别并正确读取。输出正确!
13.UFT-16在传输时几乎都会加上 0xFFFE 等传输标志很容易判断,即使没有, Win32 下
也有 IsTextUnicode 这 API 用专门方法判断。UTF-8 就很麻烦了,开头不一定都有 BOM 标
记,与各地区字符集一样都可以用一个或多字节表示一个字符,编码长度不固定,如果是
很长一段 ASCII 字符,那么用 UTF-8 和 GB2312 编码出来结果一样,就很难分辨
代码准备:经过一段时间思考,打算用这种算法。先读取前3字节,若是 BOM 头标记最好。若
不是则排除 UTF-16 ,下面集中力量分辨 UTF-8 与 ANSI 。从头开始寻找第一个 >127 的字节
若此字节内容 < 0xC0 或 >0xEF 则可判断不是 UTF-8 。否则,根据 UTF-8 的规则,在后面1 或
2 字节中看开头两位是不是 10 。若不是则断定不是 UTF-8 ,否则就算得到一个 UTF-8 字符。
如果能够找到 10个 满足条件的 UTF-8 字符就判断为 UTF-8 编码。若未到 10 个即遇到文件结
尾,那么找到 UTF-8 字符数大于 1 即断定为 UTF-8 否则断定为 ANSI …
用这种方式选择对应转码 facet:
wistrm.imbue(std::locale(wistrm.getloc(), new codecvt_utf8));
按以上想法写成函数 int IsStreamUnicode(std::wistream &wistrm); UTF-16 LE 返回1,BE 返回2,
UTF-8 返回3,否则返回 0 (判断为ANSI)
实验 13:
std::wifstream wfin( L"test.txt" );
if (!tvt::IsStreamUnicode(wfin))
wfin.imbue(loc);
while (wfin>>wstr)
wcout<<wstr<<endl;
在我试验的各种情况下,均能自动识别 UTF-16 LE UTF-16 BE UTF-8 与 ANSI 编码
并正确设定转码 locale .
————————————————————————————-
8小时后,关于后续实验的补充:
使用中发现某些情况下 UTF-16 的读写出现问题,特别是有换行符或某字节中编码刚好
等于控制符时。经过反复测试认定是 读写mode 问题。在读写 Unicode 文件时,
wifstream 与 wofstream 都设定为 ios_base::binary 模式即可。后来又补充了一个添加
BOM 头的小东西。为了使用简便把 utf_16 的 template 也去掉了。最终情形使用起来
像这个样子:
#include <iostream>
#include <fstream>
#include <codecvt_utf.h>
using namespace std;
wstring wstr;
wcout.imbue(locale(""));
// Open the Input and Output Files:
std::wifstream wfin( L"test.txt" , ios_base::binary);
std::wofstream wfout( L"testout.txt" , ios_base::binary);
// Set Output Format and Write BOM tag:
wfout.imbue(locale(locale(""), new tvt::codecvt_utf16));
wfout<<tvt::utf_bom;
// Detect the Format of the Input File
if (!tvt::IsStreamUnicode(wfin))
wfin.imbue(locale( "" ));
// Read and Write
//while(wfin>>wstr){
//    wcout<<wstr<<endl;
//    wfout<<wstr<<endl;
//}
// Another way:
while (getline(wfin,wstr)){
wcout<<wstr<<endl;
wfout<<wstr<<endl;
}
// Close Files:
wfin.close();
wfout.close();
读写测试全部通过!
感谢 记事本、EditPlus 和 HxDen 的大力支持…
至此,关于 Unicode 编码和 C++ STL IO流 的协作算是大功告成了吧,呵呵。以后有需要再
在实践中改进
花了整整一天时间 + 8 小时 = = 还算有价值吧,因为在网上看到很多人都在问且没有结果
===========分隔线============
另附:现在来看用 c++ 的 IO stream locale 系列实现转码并不是一个经济的选择,如果用 STLport 的话还好些,用 VC STL 则存在较严重的效率问题:
4月 14, 2009 11:45 下午

抱歉很久没注意到有留言上面文件的代码其实基本上都是boost对应文件原内容照搬,只用稍作改动而已。直接贴代码的话总觉得不是自己写的拿不出手,找个空间上传算了http://www.fileden.com/files/2008/5/10/1904760/codecvt_utf.zip由于我不是经常要和unicode打交道,所以测试得并不多,只是前一段写一个程序用了一下,至今使用没发现什么问题而已啦注意点是 1.把文件分为h和cpp两部分避免多次使用时重编译,直接在项目中加入两个文件使用即可。2. 未考虑不同平台下 wchar_t 大小不同的问题,我默认是按 win32 下双字节来写的,在linux下大概会有问题。现在自己水平还很有限,很多地方没照顾到呢……