摘要:
权重基因共表达网络分析(weighted gene co-expression network analysis, WGCNA)是系统生物学的一种研究方法, 在挖掘生物学数据与特定性状之间的生物学关系方面具有十分重要的作用。本研究利用玉米(
Zea mays
L.)自交系B73的14份不同发育阶段的转录组数据, 筛选掉低表达丰度的基因, 最终得到了22,426个高表达的基因用于创建基因表达矩阵; 利用不同组织作为性状, 创建表型矩阵。然后利用R软件中的WGCNA包建立了共表达网络, 共得到20个模块。本研究将与组织相关性高于0.65的模块定义为组织特异性模块, 最终鉴定到14个组织特异性模块。利用在线网站Agrigo对组织特异性模块中的基因进行GO (gene ontology)富集分析, 发现14个模块中均可以得到富集种类。开花作为玉米生育周期中的一个重要生理过程, 不仅代表着植物从营养生长到生殖生长的转变, 也关系到产量、株高和抗逆性等农艺性状。本研究发现8个组织特异性模块中的基因可以富集到与开花调控的代谢通 。此外, 有17个已经报道过的开花时间调控基因存在于共表达模块中, 并且主要分布在Blue模块和Darkmagenta模块, 因此本研究重点关注了这2个模块内部的基因调控网络。本研究通过计算不同组织中的基因表达丰度, 并联合权重基因共表达网络分析的方法, 鉴定到了具有生物学意义的共表达基因模块, 挖掘到了数个开花相关的模块, 有助于揭示玉米开花调控的遗传机制。
Abstract:
Weighted gene co-expression network analysis (WGCNA) is one of the research methods in systematic biology. It can effectively analyze the complex samples, and has been extensively used in the analysis of complicated traits for many samples. Weighted gene co-expression network has the characteristics of scale-free distribution and could construct the scale free network. The genes with similar expression level can be clustered and assigned to a module, then the relationships between co-expression modules and specific tissues can be furtherly analyzed. Our research utilized the transcriptome data of 14 different tissues of maize (
Zea mays
L.) inbred line B73, and calculated the gene expression level of the whole genome. Through filtering out the genes with low expression level we finally got 22,426 genes with high expression level to construct the gene expression matrix. We utilized the different tissues as the trait to construct the trait matrix. The weighted gene co-expression network analysis packages of R software was used to perform the co-expression network analysis, and 20 co-expression modules were identified. We finally obtained 14 tissue specific modules which were highly correlated with traits (
r
> 0.65). The enrichment analysis tool Agrigo was taken to perform the GO enrichment of the tissue specific module genes, all the 14 tissues could be enriched in GO terms. Flowering is one of the important agronomic traits in the life cycle of maize controlled by external environment signals and genetic factors. Maize flowering not only represents the transition from the vegetative growth to reproductive growth, also relates to grain yield, plant height and resistance. In our research, we detected eight tissue specific modules, which could be obtained within flowering time related pathways. In addition, 17 flowering genes which have been reported in the literatures were assigned to the co-expression modules, and mainly assigned to the Blue and Darkmagenta modules. Therefore, we focused on the network of Blue and Darkmagenta modules. Our research calculated the gene expression abundances, and detected several flowering time related modules, which will contribute to revealing the genetic mechanism of maize flowering time regulation.
Key words:
maize,
weighted gene co-expression network,
development regulation,
flowering,
transcriptome
Darkmagenta模块和Blue模块中候选开花基因的功能注释。"
模块
Module
|
开花基因
Flowering gene
|
候选开花基因
Candidate flowering gene
|
候选基因在拟南
芥同源基因
Homologous gene
in
A. thaliana
|
基因功能
Gene function
|
Blue
|
ZCN8
|
GRMZM2G450273
|
FPF1
|
编码调节开花的小蛋白质并参与赤霉素信号传导途径, 在开花的光周期诱导后, 在顶端分生组织中表达
Encodes a small protein that regulates flowering and is involved in gibberellin signalling pathway. It is expressed in apical meristems immediately after the photoperiodic induction of flowering
|
|
ZCN7
|
GRMZM2G455413
|
PSBA
|
编码叶绿素结合蛋白D1, 属于光系统II反应中心
Encodes chlorophyll binding protein D1, belonging to photosystem II reaction center core
|
|
COL1
|
GRMZM2G128212
|
ZFP8
|
编码锌指蛋白
Encodes a zinc finger protein
|
|
PhyB1
|
GRMZM5G800407
|
PMAT2
|
编码消除酚类毒素的丙二酰转移酶
Encodes a malonyltransferase that may play a role in
phenolic xenobiotic detoxification
|
|
D8
|
GRMZM2G338809
|
AMT2
|
编码高亲和性的铵转运蛋白
Encodes a high-affinity ammonium transporter
|
|
D9
|
GRMZM2G429322
|
LHT1
|
编码一个在细胞间转运氨基酸的高亲和力蛋白
Encoding a high affinity protein that translocation amino acids between cells
|
|
ZmCCA1
|
GRMZM6G435553
|
PMI1
|
响应蓝光和渗透压胁迫
Response to blue light and osmotic stress
|
Darkmagenta
|
GIGZ1B
|
GRMZM2G333183
|
ABCB1
|
ATP结合蛋白, 调节生长素转运
ATP-binding protein, regulates the transport of auxin
|
|
PhyC2
|
GRMZM2G038846
|
AT1G19320
|
与发病机制相关的超家族蛋白
Pathogenesis-related thaumatin superfamily protein
|
|
GIGZ1A
|
GRMZM2G104269
|
OASC
|
参与花粉管生长和受精
Involved in pollen tube growth and fertilization
|
|
ZmFKF1b
|
GRMZM2G041065
|
ATAVP3
|
无机H焦磷酸酶家族蛋白, 在分生组织和花器官原基表达
Inorganic H pyrophosphatase family protein. Expressed in meristems and floral organ primordium
|
|
ZmFKF1a
|
GRMZM2G027673
|
FAB2
|
植物硬脂酰酰基载体蛋白去饱和酶家族蛋白
Plant stearoyl-acyl-carrier-protein desaturase family protein
|
|
ZmPRR59
|
GRMZM2G107945
|
FKF1
|
编码黄素结合的F-box蛋白, 调节花期转变
Encodes flavin-binding F-box protein, regulates transition to flowering
|
|
ZmPRR59
|
GRMZM2G106363
|
LKP2
|
编码F-box蛋白, 响应红光和蓝光, 参与光周期途径
Encodes a member of F-box proteins, response to red and blue light, involved in photoperiod pathway
|
组织特异性模块的GO富集分析结果(部分)"
模块
Module
|
GO条目
GO term
|
本体
Ontology
|
描述
Description
|
P
值
P
-value
|
Darkorange2
|
GO: 0009889
|
BP
|
生物合成过程调节Regulation of biosynthetic process
|
6.90E-07
|
Darkorange2
|
GO: 0006355
|
BP
|
DNA依赖的转录调节Regulation of transcription, DNA-dependent
|
4.40E-07
|
Darkorange2
|
GO: 0015267
|
MF
|
通道活性Channel activity
|
0.00068
|
Darkorange2
|
GO: 0022838
|
MF
|
底物特异性通道活性Substrate-specific channel activity
|
0.00068
|
Blue
|
GO: 0009628
|
BP
|
非生物刺激的反应Response to abiotic stimulus
|
3.60E-10
|
Blue
|
GO: 0009416
|
BP
|
光刺激响应Response to light stimulus
|
1.60E-08
|
Blue
|
GO: 0003700
|
MF
|
转录因子活性Transcription factor activity
|
0.00017
|
Blue
|
GO: 0009535
|
CC
|
叶绿体类囊体膜Chloroplast thylakoid membrane
|
0.00022
|
Darkred
|
GO: 0051186
|
BP
|
辅因子代谢过程Cofactor metabolic process
|
1.20E-19
|
Darkred
|
GO: 0004252
|
MF
|
丝氨酸型肽链内切酶活性Serine-type endopeptidase activity
|
0.00015
|
Darkred
|
GO: 0009543
|
CC
|
叶绿体类囊体腔 Chloroplast thylakoid lumen
|
4.40E-13
|
Darkslateblue
|
GO: 0016051
|
BP
|
碳水化合物生物合成过程Carbohydrate biosynthetic process
|
5.60E-05
|
Darkslateblue
|
GO: 0016830
|
MF
|
碳-碳裂解酶活性Carbon-carbon lyase activity
|
3.40E-06
|
Darkslateblue
|
GO: 0042651
|
CC
|
类囊体膜Thylakoid membrane
|
0.00013
|
Turquoise
|
GO: 0060560
|
BP
|
形态发生发育Developmental growth involved in morphogenesis
|
1.70E-11
|
Turquoise
|
GO: 0015299
|
MF
|
溶质: 氢反向转运蛋白活性Solute: hydrogen antiporter activity
|
4.60E-05
|
Turquoise
|
GO: 0031224
|
CC
|
内膜Intrinsic to membrane
|
8.50E-06
|
Darkmagenta
|
GO: 0010927
|
BP
|
涉及形态发生的内膜组装
Cellular component assembly involved in morphogenesis
|
4.10E-09
|
Darkmagenta
|
GO: 0004553
|
MF
|
水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
|
7.60E-06
|
Darkmagenta
|
GO: 0030312
|
CC
|
高尔基体Golgi apparatus
|
0.0004
|
Bisque4
|
GO: 0042180
|
BP
|
细胞酮代谢过程Cellular ketone metabolic process
|
3.00E-08
|
Bisque4
|
GO: 0044281
|
BP
|
小分子代谢过程Small molecule metabolic process
|
9.90E-06
|
Bisque4
|
GO: 0042221
|
BP
|
相应化学刺激Response to chemical stimulus
|
0.00032
|
Darkgrey
|
GO: 0010033
|
BP
|
对有机物质的反应Response to organic substance
|
1.60E-07
|
Darkgrey
|
GO: 0004553
|
MF
|
水解酶活性, 水解O-糖基化合物
Hydrolase activity, hydrolyzing O-glycosyl compounds
|
4.40E-10
|
Darkgrey
|
GO: 0005740
|
CC
|
线粒体包膜Mitochondrial envelope
|
7.40E-05
|
Floralwhite
|
GO: 0006412
|
BP
|
蛋白质翻译Translation
|
9.10E-07
|
Floralwhite
|
GO: 0005198
|
MF
|
结构分子活性Structural molecule activity
|
5.80E-08
|
Floralwhite
|
GO: 0043227
|
CC
|
膜有界细胞器Membrane-bounded organelle
|
0.0085
|
Darkolivegreen
|
GO: 0010022
|
BP
|
分生组织决定Meristem determinacy
|
6.10E-07
|
模块
Module
|
GO条目
GO term
|
本体
Ontology
|
描述
Description
|
P
值
P
-value
|
Darkolivegreen
|
GO: 0003700
|
MF
|
转录因子活性Transcription factor activity
|
5.50E-05
|
Orange
|
GO: 0042542
|
BP
|
过氧化氢反应Response to hydrogen peroxide
|
2.90E-05
|
Orange
|
GO: 0009526
|
CC
|
质体Plastid
|
9.60E-09
|
Yellow
|
GO: 0009605
|
BP
|
响应外界刺激Response to external stimulus
|
8.40E-10
|
Yellow
|
GO: 0022892
|
MF
|
底物特异性转运体活性Substrate-specific transporter activity
|
0.00013
|
Plum2
|
GO: 0048437
|
BP
|
花器官发育Floral organ development
|
9.20E-05
|
Plum2
|
GO: 0005576
|
CC
|
胞外区Extracellular region
|
9.70E-05
|
Greenyellow
|
GO: 0034220
|
BP
|
离子跨膜转运Ion transmembrane transport
|
5.00E-13
|
Greenyellow
|
GO: 0032561
|
MF
|
鸟苷酸核糖核酸结合Guanyl ribonucleotide binding
|
2.40E-10
|
Greenyellow
|
GO: 0043231
|
CC
|
内细胞器膜Organelle inner membrane
|
1.20E-17
|
Stuart J M, Segal E, Koller D, Kim S K . A gene-coexpression network for global discovery of conserved genetic modules. Science, 2003,302:249-255.
doi:
10.1126/science.1087447
Jeong H, Mason S P, Barabási A L, Oltvai Z N . Lethality and centrality in protein networks. Nature, 2001,411:41.
doi:
10.1038/35075138
pmid:
11333967
Gille C, Hoffmann S, Holzhütter H G . METANNOGEN: compiling features of biochemical reactions needed for the reconstruction of metabolic networks. BMC Syst Biol, 2007,1:5.
doi:
10.1186/1752-0509-1-5
pmid:
17408512
Barabási A L, Oltvai Z N . Network biology: understanding the cell's functional organization. Nat Rev Genet, 2004,5:101-113.
doi:
10.1038/nrg1272
Liu S, Wang Z, Chen D, Zhang B, Tian R R, Wu J, Zhang Y, Xu K Y, Yang L M, Cheng C, Ma J, Lv L B, Zheng Y T, Hu X T, Yi Z, Wang X T, Li J L . Annotation and cluster analysis of spatiotemporal- and sex-related lncRNA expression in rhesus macaque brain. Genome Res, 2017,27:1608-1620.
doi:
10.1101/gr.217463.116
pmid:
28687705
Greenham K, Guadagno C R, Gehan M A, Mockler T C, Weinig C, Ewers B E, McClung C R . Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in
Brassica rapa
.
eLife
, 2017,6:e29655.
doi:
10.7554/eLife.29655
pmid:
5628015
Hollender C A, Kang C, Darwish O, Geretz A, Matthews B F, Slovin J, Alkharouf N, Liu Z . Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol, 2014,165:1062-1075.
doi:
10.1104/pp.114.237529
pmid:
24828307
Vlăduţu C, McLaughlin J, Phillips R L . Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics, 1999,153:993-1007.
doi:
10.1017/S0016672399004012
pmid:
10511573
Wong A Y, Colasanti J . Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J Exp Bot, 2007,58:403-414.
Muszynski M G, Dam T, Li B, Shirbroun D M, Hou Z, Bruggemann E, Archibald R, Ananiev E V, Danilevskaya O N . Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol, 2006,142:1523-1536.
doi:
10.1104/pp.106.088815
pmid:
17071646
Meng X, Muszynski M G, Danilevskaya O N . The
FT
-like
ZCN8
gene functions as a floral activator and is involved in photoperiod sensitivity in maize.
Plant Cell
, 2011,23:942-960.
Danilevskaya O N .
delayed flowering1
encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize.
Plant Physiol
, 2006,142:1523-1536.
doi:
10.1104/pp.106.088815
pmid:
17071646
Coles N D, McMullen M D, Balint-Kurti P J, Pratt R C, Holland J B . Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics, 2010,184:799-812.
doi:
10.1534/genetics.109.110304
Sekhon R S, Lin H, Childs K L, Hansey C N, Buell C R, de Leon N, Kaeppler S M . Genome-wide atlas of transcription during maize development. Plant J, 2011,66:553-563.
doi:
10.1111/j.1365-313X.2011.04527.x
pmid:
21299659
Kroll K W, Mokaram N E, Pelletier A R, Frankhouser D E, Westphal M S, Stump P A, Stump C L, Bundschuh R, Blachly J S, Yan P . Quality Control for RNA-Seq (QuaCRS): an integrated quality control pipeline. Cancer Inform, 2014,13:7-14.
doi:
10.4137/CIN.S14022
pmid:
4214596
Pertea M, Kim D, Pertea G M, Leek J T, Salzberg S L . Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc, 2016,11:1650-1667.
doi:
10.1038/nprot.2016.095
pmid:
27560171
魏凯, 张婷婷, 马磊 . 猪基因共表达网络模块的构建及功能分析. 畜牧兽医学报, 2017,48:2205-2215.
Lin X Z, Zhang Z H, Yang Q, Huang S W . Identification and characterization analysis of co-expression gene modules in cucumber (
Cucumis sativus
L.).
J Agric Biotechnol
, 2017,23:1121-1130 (in Chinese with English abstract).
doi:
10.3969/j.issn.1674-7968.2015.09.001
Zhang B, Kirov S, Snoddy J . WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucl Acids Res, 2005,33:W741-W748.
doi:
10.1093/nar/gki475
pmid:
15980575
Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008,9:559.
doi:
10.1186/1471-2105-9-559
pmid:
19114008
Downs G S, Bi Y M, Colasanti J, Wu W, Chen X, Zhu T, Rothstein S J, Lukens L N . A developmental transcriptional network for maize defines coexpression modules. Plant Physiol, 2013,161:1830-1843.
doi:
10.1104/pp.112.213231
pmid:
23388120
Du Z, Zhou X, Ling Y, Zhang Z H, Su Z . agriGO: a GO analysis toolkit for the agricultural community. Nucl Acids Res, 2010,38:64-70
doi:
10.1093/nar/gkq310
pmid:
20435677
Dong Z S, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M . A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One, 2012,7:e43450.
doi:
10.1371/journal.pone.0043450
pmid:
3422250
Shannon P, Markiel A, Ozier O, Baliga N S, Wang J T, Ramage D, Amin N, Schwikowski B, Ideker T . Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003,13:2498-2504.
doi:
10.1101/gr.1239303
Mascheretti I, Turner K, Brivio R S, Hand A, Colasanti J, Rossi V . Florigen-Encoding genes of day-neutral and photoperiod-sensitive maize are regulated by different chromatin modifications at the floral transition. Plant Physiol, 2015,168:1351-1363.
doi:
10.1104/pp.15.00535
pmid:
26084920
Khan S, Rowe S C, Harmon F G . Coordination of the maize transcriptome by a conserved circadian clock. BMC Plant Biol, 2010,10:126.
doi:
10.1186/1471-2229-10-126
pmid:
3095283
Sheehan M J, Kennedy L M, Costich D E, Brutnell T P . Subfunctionalization of
PhyB1
and
PhyB2
in the control of seedling and mature plant traits in maize.
Plant J
, 2007,49:338-353.
doi:
10.1111/j.1365-313X.2006.02962.x
pmid:
17181778
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286.
doi:
10.1038/90135
pmid:
11431702
Larsson S J, Lipka A E, Buckler E S . Lessons from
Dwarf8
on the strengths and weaknesses of structured association mapping.
PLoS Genet
, 2013,9:e1003246.
doi:
10.1371/journal.pgen.1003246
pmid:
23437002
Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
doi:
10.1093/pcp/pcq153
pmid:
20937610
Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y . Robust expression and association of
ZmCCA1
with circadian rhythms in maize.
Plant Cell Rep
, 2011,30:1261-1272.
Miller T A, Muslin E H, Dorweiler J E . A maize CONSTANS-like gene,
conz1
, exhibits distinct diurnal expression patterns in varied photoperiods.
Planta
, 2008,227:1377-1388.
doi:
10.1007/s00425-008-0709-1
pmid:
18301915
Sheehan M J, Farmer P R, Brutnell T P . Structure and expression of maize phytochrome family homeologs. Genetics, 2004,167:1395-1405
doi:
10.1534/genetics.103.026096
pmid:
15280251
Hayes K R, Beatty M, Meng X, Simmons C R, Habben J E, Danilevskaya O N . Maize global transcriptomics reveals pervasive leaf diurnal rhythms but rhythms in developing ears are largely limited to the core oscillator. PLoS One, 2010,5:e12887.
doi:
10.1371/journal.pone.0012887
pmid:
20886102
Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A . Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics, 2004,168:2169-2185.
doi:
10.1534/genetics.104.032375
pmid:
15611184
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
doi:
10.1080/10543400903572753
pmid:
20309759
Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
doi:
10.1016/j.pbi.2007.01.003
pmid:
17291822
Camus-Kulandaivelu L, Veyrieras J B, Madur D, Combes V, Fourmann M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A . Maize adaptation to temperate climate: relationship between population structure and polymorphism in the
Dwarf8
gene.
Genetics
, 2006,172:2449-2463.
doi:
10.1534/genetics.105.048603
pmid:
16415370
肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广.
基于SNP标记揭示中国鲜食玉米品种的遗传多样性
[J]. 作物学报, 2022, 48(6): 1301-1311.
崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华.
2个玉米
ZmCOP1
基因的克隆及其转录丰度对不同光质处理的响应
[J]. 作物学报, 2022, 48(6): 1312-1324.
王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明.
长江中游双季玉米种植模式周年气候资源分配与利用特征
[J]. 作物学报, 2022, 48(6): 1437-1450.
杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文.
玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响
[J]. 作物学报, 2022, 48(6): 1476-1487.
陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺.
叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控
[J]. 作物学报, 2022, 48(6): 1502-1515.
徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东.
宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性
[J]. 作物学报, 2022, 48(6): 1526-1536.
单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰.
转基因玉米NK603基体标准物质研制
[J]. 作物学报, 2022, 48(5): 1059-1070.
徐昕, 秦超, 赵涛, 刘斌, 李宏宇, 刘军.
GmELF3s调控大豆开花时间和生物钟节律的功能分析
[J]. 作物学报, 2022, 48(4): 812-824.
许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇.
过表达
ZmCIPKHT
基因增强植物耐热性
[J]. 作物学报, 2022, 48(4): 851-859.
刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平.
玉米矮化突变体
gad39
的遗传分析与分子鉴定
[J]. 作物学报, 2022, 48(4): 886-895.
闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅.
连作秸秆还田下玉米氮素积累与氮肥替代效应研究
[J]. 作物学报, 2022, 48(4): 962-974.
徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤.
一个新的玉米
Bt2
基因突变体的遗传分析和分子鉴定
[J]. 作物学报, 2022, 48(3): 572-579.
宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春.
东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系
[J]. 作物学报, 2022, 48(3): 726-738.
渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全.
基于全基因组关联分析解析玉米籽粒大小的遗传结构
[J]. 作物学报, 2022, 48(2): 304-319.
张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦.
控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响
[J]. 作物学报, 2022, 48(1): 180-192.